

daho National Laboratory

Battery Technology for Vehicles

Tim Murphy Manager Energy Storage and Transportation Systems

Cascadia, Transforming Transportation Sept., 04 2008

INL Focus

EERE -Vehicle Technologies Program

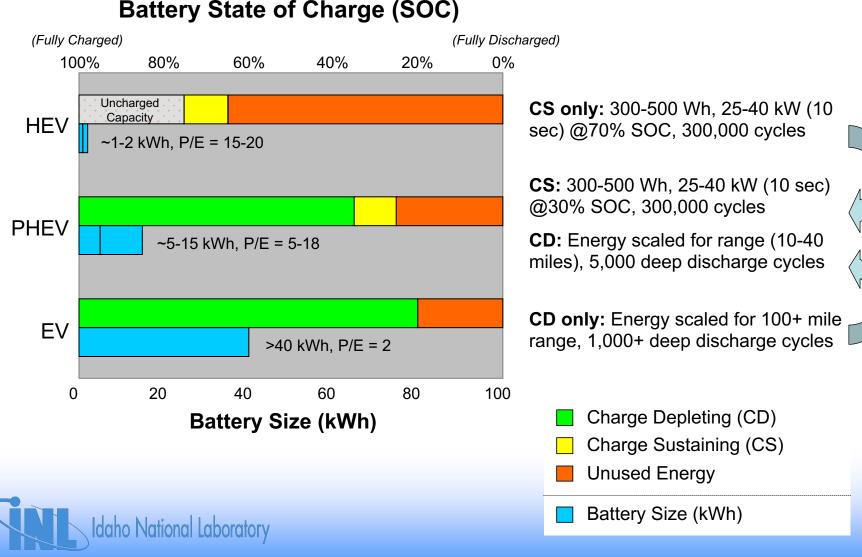
Support U.S. Department of Energy's effort to reduce national dependence on foreign oil through:

Vehicle Systems and Energy Storage

- Technology and Infrastructure Development
- Vehicle and component testing, demonstrations

Introduction

- Electrochemical Energy Storage is the most efficient way to push cars around.
 - \succ Highest potential payoff for the \$\$.
 - Assuming cleaner production of electricity that includes renewables and nuclear.
 - > Achievable infrastructure improvements.
 - Expansion of smart grid systems to access clean energy and accommodate vehicle charging at home and public facilities.

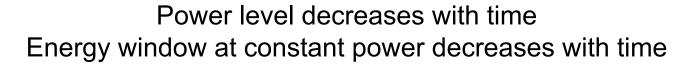

Introduction

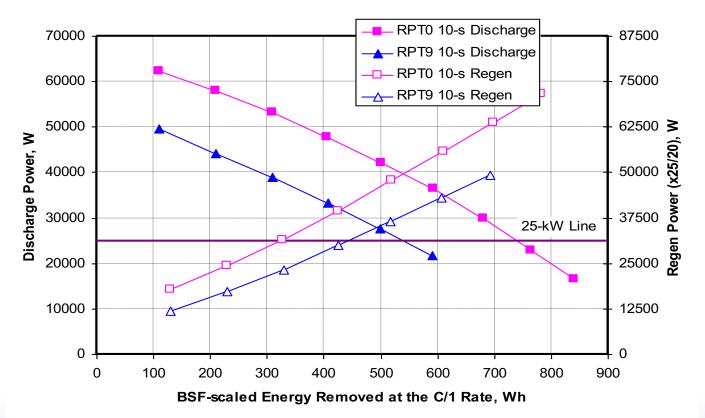
Advanced batteries are improving

- Consumer acceptance of HEVs today is due to the durability of the NiMH batteries.
- Gradual displacement of NiMH batteries is expected as Lithium ion promises increased performance and longer life.
- Cost of lithium ion batteries for consumer electronics is now below that of NiCd and NiMH batteries (<\$500/kWh).</p>
- Lithium ion is viewed as the most commercially viable energy storage option for PHEVs due to its potential for much higher energy and power densities.
- Further improvements are needed for high energy lithium ion before a large penetration of PHEVs and transition to EV's can take place.

Vehicle Battery Operation

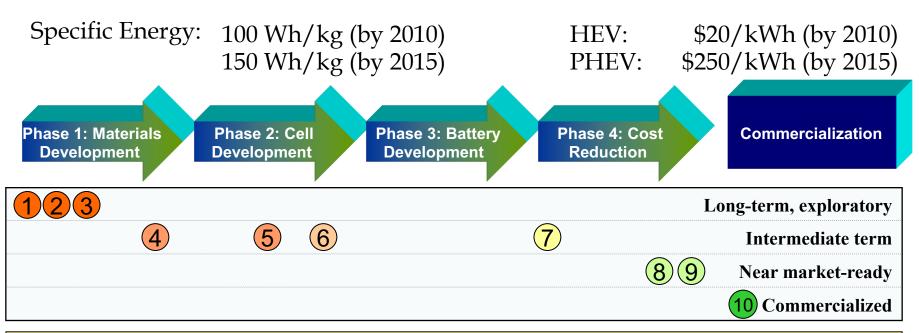
Source: Duong, BES Workshop, Apr. 2, 2007


Battery Issues


High energy battery issues (PHEV, EV)

- Limited availability and U.S. production capacity
- Cost: current batteries are 8X the DOE PHEV goal (\$2000/kWh today vs. \$250/kWh goal in 2015)
- Life: projections of 10-15 years are based on limited data
- Abuse tolerance
- Low-temperature performance
- □ Emerging technologies Improved chemistry, stability
 - \succ Li₄Ti₅O₁₂ and alloy composite negatives
 - \succ LiFePO₄, LiMnPO₄, and other layered-spinel electrodes
 - Advanced Pb Acid for light HEVs (Ultrabattery)

HEV Batteries - power and energy fade



DOE Technology Development Roadmap HEV to PHEV to EV

Research Goals

<u>Cost Goals</u>

- 1. Li Metal Polymer
- 2. Li/Sulfur system
- 3. Li alloy/high V TMO system
- 4. Li titanate/Mn spinel

- 5. Graphite/Mn spinel
- 6. Graphite/Iron phosphate
- 7. Graphite/Nickelate

- 8. Ultracapacitors
- 9. Low cost separators
- **10.** NiMH

USABC Goals for PHEV Batteries

Power requirements are set to allow an all-electric operation under Urban Dynamometer Driving Schedule (UDDS) in charge-depleting mode

 Characteristics at EOL (End of Life) 		High Power/ Energy Ratio Battery	•High Energy/ Power Ratio Battery
Reference Equivalent Electric Range	miles	10	40
Peak Pulse Discharge Power - 2 Sec / 10 Sec	kW	50 / 45	46 / 38
Peak Regen Pulse Power (10 sec)	kW	30	25
Available Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
Available Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
Minimum Round-trip Energy Efficiency (USABC HEV Cycle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
CD Life / Discharge Throughput	Cycles/MW h	5,000 / 17	5,000 / 58
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
Calendar Life, 35°C	year	15	15
Maximum System Weight	kg	60	120
Maximum System Volume	Liter	40	80

DOE PHEV Battery Activities

- DOE PHEV R&D Plan
- 5 new lithium ion PHEV battery projects
 JCS, CPI, Enerdel, A123, 3M
- Evaluated at ANL and INL
- PHEV Battery Test Procedures Manual published
- Testing batteries in vehicle conversions
 - Lithium ion (PHEVs), advanced Pb acid (HEVs)
- Battery to grid charging/power flow studies
- Transition to EV battery systems

This work is supported by DOE's Energy Efficiency and Renewable Energy Vehicle Technologies Program

Tien Duong, Dave Howell, Lee Slezak, Ro Sullivan, and Pat Davis

