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1 Introduction
“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”1 John von Neumann’s famous dictum points an accus-
ing finger at all who set their ordered minds to engender disorder. Much as in
times past thieves, pimps, and actors carried on their profession with an uneasy
conscience, so in this day scientists who devise random number generators suffer
pangs of guilt. George Marsaglia, perhaps the preeminent worker in the field,
quips when he asks his colleagues, “Who among us has not sinned?” Marsaglia’s
work at the Supercomputer Computations Research Institute at Florida State
University is well-known. Inasmuch as Marsaglia’s design and testing of ran-
dom number generators depends on computation, and inasmuch as computation
is fundamentally arithmetical, Marsaglia is by von Neumann’s own account a
sinner. Working as he does on a supercomputer, Marsaglia is in fact a gross
sinner. This he freely admits. Writing of the best random number generators
he is aware of, Marsaglia states, “they are the result of arithmetic methods and
those using them must, as all sinners must, face Redemption [sic] Day. But
perhaps with better understanding we can postpone it.”2

Despite the danger of being branded a heretic, I want to argue that ran-
domness entails no moral deficiency. I will even advocate that random number
generators be constructed with reckless abandon–though a reckless abandon

1Quoted in Knuth (1981, p. 1). It is surprising how this almost flippant remark has been
elevated to a dogma. In addition to its canonical status, this remark functions as one of the
computer scientist’s stock inside jokes.

2These comments derive from the Interdisciplinary Conference on Randomness at Ohio
State University, 11-16 April 1988. This event was significant for assembling philosophers,
mathematicians, psychologists, computer scientists, physicists, and statisticians to share their
insights into randomness. In referring to this event I shall use the initials ICR.
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that is well thought out. Randomness, properly to be randomness, must leave
nothing to chance. It must look like chance, like a child of the primeval chaos.
But underneath a keen intelligence must be manipulating and calculating, taking
advantage of this and that expedient so as systematically to concoct confusion.
I am reminded of the photo-journalists in Vietnam who rearranged scenes of
carnage simply to enhance the sense of indiscriminate violence. Here, of course,
there was a moral fault, but not with randomness per se. Suffice it to say,
randomness, to be randomness, must be designed.
In his now classic, though somewhat dated, study of random numbers Don-

ald Knuth (1981, pp. 4—6) describes his naive attempt to construct a foolproof
random number generator. His “Super-random” number generator (the shud-
der quotes are his) was a tangled web of subroutines that built complication
upon complication. His rationale was that an incredibly complicated algorithm
which no one could follow ought to produce an incredibly complicated sequence
of numbers which, again, no one could follow, i.e., for which no systematic pat-
tern could be found. Failure to find such patterns would be taken to signal
randomness. Inscrutability in, inscrutability out–this was Knuth’s rationale.
His rationale proved dead wrong. Instead of finding disorder and chaos, Knuth
discovered the worst sort of non-randomness: his algorithm took a particular
seed (i.e., an initial input that launches the random number generator) and just
kept repeating it. The seed was 6065038420. Knuth’s random number generator
repeated 6065038420 over and over again:

6065038420 6065038420 6065038420 6065038420 6065038420

6065038420 6065038420 6065038420 6065038420 ....

Whatever is meant by randomness, it certainly can’t be this. Knuth (1981, p. 5)
was quick to draw the right conclusion: “The moral of this story is that random
numbers should not be generated with a method chosen at random. Some theory
should be used” (the italics are his).
Knuth and I agree that generating randomness involves forethought and

design. Knuth, however, still suffers from a guilty conscience, which I do not.
Random number generators must be carefully designed. On this point there
is no controversy. Randomness is fundamentally a question of design. This
point is more far reaching and open to controversy. Randomness supervenes on
design, not probability. Herein lies a departure from precedent. The typical
way of understanding randomness is as follows: an object supposed to exhibit
randomness is proffered (e.g., a sequence of numbers). Next one examines the
object against a collection of patterns (e.g., statistical tests). If the object fits
any pattern in the collection, it is non-random. If it violates all the patterns
in the collection, it is random. I propose to reverse this. Consider first a
fixed collection of patterns. Any object which violates all the patterns in this
collection is random. Those which satisfy some one pattern in the collection are
non-random. In this way randomness becomes a relative notion, i.e., randomness
with respect to a collection of patterns.
In practice the first approach to randomness is fundamentally probabilistic:
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strings of digits constitute the random objects, and statistical tests set the
patterns. When the pattern induced by a statistical test is violated, we say
the string passes the test.3 When the string passes sufficiently many tests, we
say the string is random. The tests, however, are formulated so that most
strings generated according to a fixed probability distribution pass the test.
This poses a problem. For any string there is some statistical test which the
string fails to pass. Thus we can always cook up tests which render a supposedly
random string non-random.4 It is within this context that von Neumann uttered
his dictum. Truly random strings are supposed to be generated according to
some probability distribution and for this reason–and this reason alone–pass
statistical tests. Random number generators, on the other hand, are purely
deterministic and can only mimic the passing of statistical tests. According to
von Neumann, strings generated by computer algorithms can at best pretend
to randomness–they are impostors.
But when probability is repudiated, randomness is no longer a question of

imitating chance. When randomness supervenes on design, patterns become
the fundamental object of study. A random object is then an object which
systematically violates a fixed collection of patterns. In contrast to the con-
ventional probabilistic approach, this alternate approach is without pretense.
With premeditated randomness one does not try to imitate chance as one does
with probabilistic randomness. Rather, one conducts a methodical search for
an object satisfying certain constraints. The constraints comprise the patterns
which must all be violated.
To clarify these thoughts I shall need to review a little probability theory

as well as some past thoughts on randomness. In analyzing concrete instances
of randomness, I shall limit myself to sequences of 0s and 1s. This limitation
involves no real loss of generality. At the outset let me stress that probability
is a well-defined mathematical theory. Randomness–what I have called prob-
abilistic randomness–is not. At an interdisciplinary conference on randomness
attended, among others, by statisticians George Marsaglia and Persi Diaconis
as well as philosophers Brian Skyrms and Richard Jeffrey, the broad conclu-
sion was this: We know what randomness isn’t, not what it is. I attribute this
unattractive conclusion to the wedding of randomness with probability. The two
experience irreconcilable differences. Probabilistic randomness has consistently
withstood a precise theoretical formulation. On the other hand, the premedi-
tated randomness I shall sketch does lend itself to a theoretical formulation.

3The wording here may strike the reader as unnatural, for violating a pattern is equated
with passing a statistical test. The two notions do in fact correspond: the passing of a
statistical test is the normal, expected outcome; only when something unusual is going on do
we expect a statistical test to fail. For a chance event to fit a pattern is unusual; any pattern is
thought to be sufficiently restrictive that breaking the pattern constitutes the normal, expected
outcome.

4Precisely because statistical tests abound and can disqualify any supposedly random
string, von Mises’s unqualified notion of collective foundered–no infinite sequence maintains
the right frequencies across all subsequences. See von Mises (1936).
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2 A Little History and Motivation
Probability’s appeal to the popular imagination has always resided in the law
of large numbers. Ever since Thomas Huxley’s simian typists gave the world
a complete set of Shakespeare, people have stood in awe of this law. Its basic
contention is that if an event has a positive probability of occurring, no matter
how small, and if one repeats the circumstances under which that event can
occur often enough, then that event will definitely occur.5 Of course, if the
event has probability zero of occurring, it will never occur.
As an example, suppose you are confined to prison and handed a fair coin.

You are informed that if you flip the coin and get 100 heads in a row, you will
be released. Since individual coin tosses are independent, probabilities multiply.
Thus you expect heads on the first toss with probability 1

2 , two heads in a row
with probability 1

2 × 1
2 = 22, . . . and 100 heads in a row with probability

1
2 × 1

2 × · · · × 1
2 [100 times] = 2100, which is approximately 1 in 1030. This

probability is so small as to leave you little hope of getting out of jail soon. If
you could, for instance, make 10 billion attempts each year to obtain 100 heads
in a row, then you stand only an even chance of getting out of jail in 1020 years.
But take heart, the strong law of large numbers guarantees that eventually you
will be free.6

Suppose next you are handed a standard deck of playing cards. This time
to get out of prison you have to deal yourself a royal flush in the suite of spades,
each time thoroughly shuffling the deck. This event has probability on the
order of 1 in a million. And so in about a million tries you should be out of
jail. Your jailer, however, likes your company, and wants to keep you around.
Consequently, he decides to remove the ace of spades from the deck. This move
shatters your hopes of freedom. With the doctored deck your probability of
getting the appropriate royal flush is precisely zero.
In any probabilistic interpretation time plays a key role. Coin tossing is

really the basic example in probability theory; there is a sense in which if one
understands coin tossing in all its ramifications, one understands all of proba-
bility theory.7 Say you are given a fair coin. You are about to toss the coin.

5For the strong law of large numbers see Bauer (1981, p. 172); for an unconventional look
at Borel’s famous typewriter-wielding simians see Wilder-Smith (1975, p. 63).

6This example inspires a massive revision of the criminal justice system: with the require-
ment that all coin flips be fair and duly recorded, sentence a convicted criminal to serve time
in prison until he flips n heads in a row, where n is selected according to the severity of the
offence. Thus for a 10 year prison sentence, if we assume that the prisoner can flip a coin
once every five seconds (this seems reasonable), eight hours a day, six days a week, and given
that the average attempt at getting a streak of heads before tails is 2 (=

P
1≤i≤∞ i2−i), then

he will on average attempt to get a string of n heads once every 10 seconds, or 6 attempts
a minute, or 360 attempts an hour, or 2880 attempts in an eight hour work day, or 901440
attempts a year (assuming a six day work week), or approximately 9 million attempts in 10
years. 9 million is approximately 223. Thus if we required of a prisoner that he flip 23 heads
in a row before being released, we could expect to see him out in approximately 10 years. Of
course specific instances would vary–some prisoners being released after only a short stay,
others never recording the elusive 23 heads!

7There are some deep isomorphism theorems about Polish spaces, of which the space that
models coin tossing is a key example. Most of modern probability theory can be fitted into
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You are uncertain of the outcome. There is an even chance that it will come out
heads or tails. Now you flip the coin. It lands heads. Suddenly all uncertainty is
removed. Uncertainty and probability apply only to future, unrealized events.
Once the event has occurred and been noted, all uncertainty is removed.
Rare events are a cause for surprise only if the timing is right. Imagine,

for instance, that before you is a large, grassy field. You have 100 stones and
100 flags each marked from 1 to 100. With a helicopter you fly over the field,
releasing the stones indiscriminately. After you have dropped your last stone,
you land the helicopter safely away from the field, leave the helicopter on foot,
and examine where your stones have landed, placing next to each stone a flag
with the corresponding number. There are an exceedingly large number of ways
the stones could have landed. They had to land in some one way. You are
looking at it. You are not surprised or shocked. You don’t think a miracle has
occurred because you are witnessing an event of exceedingly small probability.
Some improbable event had to occur. Placing the flags next to the stones after
the stones have fallen does not change these conclusions.
Now modify the situation. As before you have a field, stones, flags, and a

helicopter. As before you take your helicopter and stones, and fly over the field,
dropping the stones indiscriminately. But before you take off you first walk
around your field and stick the flags in the ground at will. Having dropped the
stones, you land the helicopter and now examine the field. Lo and behold, all
the stones are next to their matching flags. Do you have a right to be surprised?
Absolutely. When an extremely unlikely event matches a preset pattern, there
is cause for surprise. In fact when such an event becomes too unlikely, one looks
for non-probabilistic factors to account for it.
To reinforce this point, let me offer another example. Suppose someone

stands 50 meters from a large wall with bow and arrow in hand. The wall is
sufficiently large that he cannot help hitting it. Every time he shoots an arrow
at the wall, he paints a target around the arrow, so that the arrow is squarely in
the bull’s-eye. What can be concluded? Absolutely nothing about the archer’s
ability as an archer. But suppose now he paints a fixed target on the wall
and then shoots at it. Behold, 100 times in a row he hits a perfect bull’s-eye.
Nobody in his right mind would attribute this performance to beginner’s luck.
In fact, one is obliged to conclude this is a world-class archer.
Temporal succession figures into any probabilistic interpretation. When the

flags are placed after the rocks have fallen, and the archer paints the bull’s-
eye after the arrow has been shot, there are no surprises. But when the flags
and target are preset, and the outcome matches the preset pattern, it is vain
to appeal to the law of large numbers. It only tells us that eventually we can
expect to see some incredibly rare event, not that we shall witness it as the
next event. If we do witness it immediately, we should be shocked–so much
so that we should look beyond chance to account for these otherwise grotesque
anomalies.

the abstract framework provided by Polish spaces. The reason coin tossing is fundamental
is that all Polish spaces are (Borel) isomorphic to one another, and hence to the space that
models coin tossing. See Parthasarathy (1967, pp. 7—15).
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The examples I have just described fit neatly within Kolmogorov’s foun-
dational framework for probability theory which he developed in the 1930’s
(Kolmogorov, 1950). By the mid-1960s, however, Kolmogorov was concerned
with the following problem for which his earlier work in probability provided no
insight (Kolmogorov, 1965b): flip a fair coin 100 times and note the occurrences
of heads and tails in order. Let us agree to denote heads by the number 1 and
tails by the number 0. Thus a sequence of 100 coin flips could be represented
as follows:

11000011010110001101111111010001100011011001110111 (R)

00011001000010111101110110011111010010100101011110.

This is in fact a sequence I just constructed by flipping a penny 100 times. Now
compare this with the following sequence:

11111111111111111111111111111111111111111111111111 (N)

11111111111111111111111111111111111111111111111111.

This sequence corresponds to flipping heads 100 times in a row. Now the prob-
lem Kolmogorov faced with his standard probabilistic framework, the one he
constructed in the 1930s, was his inability to say anything about which of these
two sequences was more random. Sequence (R) and sequence (N) have been la-
beled suggestively, R for random, N for non-random. Kolmogorov wanted to say
that (R) was more random than (N). But his probability theory from the 1930s
only told him that each of these sequences have the same small probability of
occurring, namely 2100, or approximately 1 in 1030. We analyzed this probabil-
ity earlier for the sequence (N), but the analysis is true for any sequence of 100
coin tosses. Each sequence of 100 coin tosses has the same small probability.
To get around this difficulty Kolmogorov introduced some concepts from

recursion theory, a subfield of mathematical logic concerned with computation
and generally considered quite far removed from probability theory. What he
said was that a string of 0s and 1s is more and more random as the shortest
computer program that generates the string becomes longer and longer (Kol-
mogorov, 1965b). A computer program can be conceived as a collection of
simple instructions to be executed sequentially. For our purposes we can think
of a computer program as a short-hand description. Thus sequence (N) is not
very random because it has a very short description, namely,

repeat ‘1’ 100 times.

Note that we are interested in the shortest descriptions. Any sequence can be
described in terms of itself. Thus (N) has the long description

copy ‘11111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111’.

But this is of no interest to us since there is one so much shorter.
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The sequence

11111111111111111111111111111111111111111111111111 (H)

00000000000000000000000000000000000000000000000000

is slightly more random since it requires a longer description, for example,

repeat ‘1’ 50 times, then repeat ‘0’ 50 times.

So too the sequence

10101010101010101010101010101010101010101010101010 (A)

10101010101010101010101010101010101010101010101010

has a short description,
repeat ‘10’ 50 times.

The sequence (R) has no short and neat description. For this reason Kolmogorov
would regard it as more random than sequences (N), (H), and (A).
As we noted, one can always describe a sequence in terms of itself. Thus (R)

has the description

copy ‘11000011010110001101111111010001100011011001110111

00011001000010111101110110011111010010100101011110’.

Because sequence (R) was constructed by coin flips, it is very likely that this is
the shortest description of (R). It is a fact that the vast majority of sequences
of 0s and 1s have as their shortest description just the sequence itself, i.e., most
sequences are random in Kolmogorov’s computational sense. In the language
of statistical mechanics, there are lots of high entropy sequences, but few low
entropy sequences. Thus the collection of all highly ordered sequences, those
whose computational descriptions are very short, constitutes a rare event, and
the observance of any such sequence as a result of chance alone is cause for
surprise. Nay, it is cause to look for explanations other than chance.
Let us now consider a practical application of Kolmogorov’s ideas. Consider

some fellow who approaches you on the street and informs you he has just flipped
a coin 100 times. If he hands you sequence (R), you examine it and try to come
up with a short description (coming up with a short description is analogous
to performing statistical tests). After repeated attempts you find you cannot
describe the sequence any better than the sequence describes itself. Hence you
conclude it is a genuinely random sequence, i.e., a type of sequence this fellow
might well have gotten by flipping a fair coin. You are not particularly surprised
or impressed.
Suppose next this fellow hands you sequence (R) on a slip of paper and then

disappears. A week later he reappears and says, “Guess what? Remember that
sequence I handed you a week ago. Well, last night I was flipping this penny.
And would you believe it, I got the same sequence as on the slip of paper.” You
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examine the coin and are convinced of its genuineness. Moreover, this fellow
insists that each time he flipped the penny, he gave it a good jolt (these were
not phony flips). What do you conclude now? As before, you will not be able to
find any shorter description than the sequence itself–it is a random sequence.
Unless you believe in miracles, however, you would be a fool to conclude this
fellow is telling the truth. The timing is all off. When he handed you the
sequence a week earlier, he preset the pattern. Thus the order is established.
When he returns and says he subsequently reproduced the sequence he handed
you, he perjures himself. For what he is really saying is that he knew what
sequence he would be flipping later that week. This is prophecy. Lest anyone
think that prophecy is not miraculous (read supernatural, strictly outside the
material realm), he need only go to Wall Street or Las Vegas where all genuine
prophets are billionaires.
Suppose finally this fellow comes to you and says, “Would you believe it? I

just flipped this penny 100 times, and it came up heads each time.” As before,
the coin he shows you is a genuine penny, and he is emphatic that his were not
phony flips. This time he did not preset the pattern. Rather the pattern is
intrinsically given. Sequence (N) has about the lowest entropy possible. There
are very few sequences with descriptions as short as “repeat ‘1’ 100 times.” Once
again, except for a miracle you would be a fool to believe this fellow is telling the
truth. Reasonable minds explain such events apart from chance. The problem
is not that such sequences constitute exceedingly rare events. The problem is
rather that there are too many other events which violate the few preset patterns
humans are able to retain in their minds. Basic here is the notion of an intrinsic
order. In the sense of our flags and stones example, our cognition presets the
flags in a very limited number of ways. When the stones fall and land next to
the preset flags, we are right to be surprised and look for explanations other
than chance. Probabilistic arguments of this sort are circumstantial. Our coin
flipping friend who claims to have flipped 100 heads in a row (with a fair coin,
without phony flips) would be convicted of lying in polite society, much as a
lottery manager whose relatives all win the jackpot would be convicted of fraud
by a jury.8

3 Complexity and Randomness
Computational complexity theory is perhaps the hottest topic currently in the-
oretical computer science. Computational complexity addresses the computa-
tional resources needed for an algorithm to accomplish its task. The big question
in computational complexity is whether the polynomial-time algorithms coin-
cide with the non-deterministic polynomial-time algorithms–whether P equals

8Since the rules of evidence in court require a causal story to convict an individual and
not mere improbabilities, it is conceivable that a lawyer would defend the lottery manager
by appealing to the infinitesimally small probability of “things just happening that way”–
anything after all is possible. But with severe improbabilities of the type described causal
stories are usually readily available. For instance, an investigation of the lottery’s chance
mechanism may well indicate tampering by the lottery manager.
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NP (see Garey and Johnson, 1979). This is a question of time-complexity. The
resource is time and the question is whether the problems in NP can be solved
in polynomial time. But time is not the sole computational resource. Space, or
equivalently memory, enters as well. How much memory is needed to solve a
given problem? This too becomes a major consideration. In the construction of
efficient algorithms, time-memory tradeoffs must always be kept in mind. Thus
a polynomial-time algorithm may require too much memory to be practicable,
whereas a program requiring little memory may run interminably.
Now what has all this to do with randomness? If we recall Kolmogorov’s

approach to randomness, we understand that within his framework a string of
numbers is random to the extent that the program which generates it is max-
imal. But maximal in what sense? Maximal in the sense of program length.
Kolmogorov’s random generators are programs which satisfy two constraints:
(1) no program of strictly shorter length must exist which generates the pro-
posed random string, i.e., the program cannot be abbreviated and still generate
the string. Let us call such programs terse. This requirement is essential since
for any program it is possible to add in some vacuous loops which increase the
length of the program, but leave the effective work of the program unchanged,
i.e., leave input-output unchanged. (2) Among all terse programs the random
generators are those of maximal length. Kolmogorov’s random generators are
really solutions to a minimax problem: among all terse programs (those satis-
fying the minimality condition) choose those of maximal length. Kolmogorov’s
notion of randomness hinges on space-complexity–the key parameter is pro-
gram length. To generate random strings these programs must be stored in the
memory of a computing device. Those which eat up the most memory, but can-
not be abbreviated without affecting input-output, are Kolmogorov’s random
generators.
More recently, time-complexity has been used to define randomness. In this

case one looks to strings of digits which polynomial-time algorithms cannot
distinguish from truly random strings (i.e., strings whose digits are derived by
sampling independently from a fixed probability distribution). One speaks of
strings being P-indistinguishable from truly random strings. The basic idea
here is that the only algorithms humans can legitimately wield are polynomial-
time algorithms; non-polynomial time algorithms are beyond our ken. Thus if
all our polynomial-time algorithms fail to distinguish a putative random string
from a truly random string, then in fact no distinction exists. Leibniz’s identity
of indiscernibles is implicit here–distinctions arising through non-polynomial
algorithms are indiscernible.
Mathematicians have found these space- and time-complexity approaches to

randomness highly stimulating, at least initially. Without question the ideas are
pretty. Moreover, there is something genuinely deep going on here. Martin-Löf
(1966a), a student of Kolmogorov, derived a good deal of classical probability
theory from the space-complexity approach to randomness (e.g., the law of large
numbers and the law of the iterated logarithm). Andrew Yao (1982) and Silvio
Micali (Goldreich, Goldwasser and Micali, 1986) have used the time-complexity
approach to randomness with some success in cryptography (cf. the one-way
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and trapdoor functions of public-key cryptography).
Still, there are problems. After the initial enthusiasm and successes have

worn thin, one finds that complexity approaches to randomness don’t deliver
on their promises. This is certainly true of Kolmogorov’s approach via space-
complexity. Time-complexity, being a much more recent approach to random-
ness, has yet to find disfavor. Nevertheless, similar difficulties face both ap-
proaches. Certainly space- and time-complexity supply wonderful intuitions for
randomness, and without them it is unlikely this paper would have been writ-
ten. But they fail to deliver a theory of randomness in the sense that one can
point to any concrete sequence of 0s and 1s and call it random.9

There are two reasons for this practical failure. The first has to do with
the choice of programming language. By this I do not mean BASIC, Lisp,
or Fortran, but rather how a computational device interprets a string of 0s
and 1s as a program and then uses such a (program) string to generate the
random (output) strings we are after. Alternatively, we can ask, Which universal
Turing machine are we to use? Neither space- nor time-complexity approaches
to randomness address this question. The technical results that derive from
these approaches are fundamentally asymptotic, depending on ever-increasing
input and output strings. As a result the actual choice of programming language
becomes immaterial: one can say what general characteristics ever-increasing
strings of 0s and 1s must have to be random, but one cannot specify the random
strings of a given length.
To clarify this criticism let us reconsider an example from the last section.

There we examined two strings,

11000011010110001101111111010001100011011001110111 (R)

00011001000010111101110110011111010010100101011110

and

11111111111111111111111111111111111111111111111111 (N)

11111111111111111111111111111111111111111111111111.

(R) was constructed by flipping a coin 100 times, whereas (N) was constructed
without recourse to any chance mechanism. I claimed that (R) was more random
than (N) because the shortest program for generating (R) was longer than the
shortest program for generating (N):

copy ‘11000011010110001101111111010001100011011001110111

00011001000010111101110110011111010010100101011110’
9This is not to deny that the work of Kolmogorov and Martin-Löf in the 1960s has ceased

to inspire mathematicians. Both in logic (see van Lambalgen, 1989 and Chaitin, 1987) and
in randomness proper (see Kolmogorov and Uspensky, 1988 and van Lambalgen, 1990) their
ideas continue to yield fruit. But at the root of both space- and time-complexity approaches
to randomness is a recursion theoretic framework wherein randomness exists only as a limit,
allowing for arbitrarily long strings, arbitrarily long programs, and arbitrarily long running
times.
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versus
repeat ‘1’ 100 times.

But in making this claim I engaged in some shameless handwaving. This is
not to say I misled the reader. Rather, in stroking the reader’s intuition I had
to dispense with the usual standards of mathematical rigor. Let me now make
things right. Our choice of programming language was imperative statements
in English: do this, then do that, then go back to doing this, do such-and-
such ten times, etc. This is a perfectly valid programming language as long as
all commands are intuitively computable.10 Thus we must exclude commands
which would allow us to solve the halting problem or would stop if Fermat’s
conjecture were in fact true.
Let us call this programming language Glish. If we restrict our attention

to the terse programs of Glish, we can be sure that (R) will require a longer
program than (N). But let us now consider a variant of Glish, the programming
language Glish*. Glish* is identical with Glish, save the following modification:
for programs longer than 100! (= 100×99×98×· · ·×2×1) Glish* is just Glish;
for programs shorter than 100! those which in Glish produce (N) produce (R)
in Glish*, and those which in Glish produce (R) produce (N) in Glish*; for pro-
grams shorter than 100! which produce neither (N) nor (R), Glish and Glish* are
identical. Thus Glish and Glish* have identical output for all programs beyond
a certain length and interchange output of strings (N) and (R) for programs
of shorter length. Note that Glish and Glish* are both universal computers.
Also observe that since these languages coincide once programs have achieved
a certain length (100!), Glish and Glish* have identical asymptotic properties.
Thus any computational approach to randomness which is machine independent
will yield the same notion of randomness for both Glish and Glish*.
Glish and Glish*, however, give conflicting accounts of the randomness of

strings (N) and (R). In Glish* the simple program

repeat ‘1’ 100 times

generates what to our intuition is the more random

11000011010110001101111111010001100011011001110111 (R)

00011001000010111101110110011111010010100101011110,

whereas the complicated program

copy ‘11000011010110001101111111010001100011011001110111

00011001000010111101110110011111010010100101011110’

now generates the intuitively simple

11111111111111111111111111111111111111111111111111 (N)

11111111111111111111111111111111111111111111111111.
10This is really an appeal to Church’s thesis, i.e., the claim that intuitive and mathematical

computability coincide. See Weihrauch (1987, p. 87).
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Of course the move from Glish to Glish* is a cheap trick, but it is a trick
fully sanctioned by recursion theory. Because the programming language can
always be perverted in this way, complexity theory can tell us nothing about
the randomness of a fixed, finite string. Only as we allow strings to become
arbitrarily large do the complexity approaches to randomness give firm results.
Kolmogorov’s approach to randomness offers an intuition of why (R) is more
random than (N), an intuition confirmed for concrete programming languages
like Glish. But the theorems of theoretical computer science carry weight only
if they are machine independent, i.e., only if they hold across all programming
languages. Thus the computational complexity approaches to randomness at
best yield asymptotic, limiting results.
The question of programming languages is not solely responsible for the

failure of complexity theory to give a practical account of randomness. Equally
responsible is the still unresolved role of probability. Random strings are, after
all, supposed to resemble strings derived from chance processes. Thus any string
that a computer outputs demands probabilistic validation. And this as we have
seen lands us in a probabilistic bog, for we must subject a putative random
string to statistical tests. Now a statistical test is among other things a decision
procedure; it must decide between outcomes which pass the statistical test, and
those which fail it. Neither of these categories must be empty, otherwise the
statistical test is vacuous. Thus any such test must fail some strings and pass
others. But how shall the tests themselves be chosen? Which tests suffice to
guarantee randomness?
Confusion here has led to droves of abysmal random number generators,

which because of their wide use in experimental research have filled the scientific
literature with type I errors. This is a well recognized fact. Often it has been
blamed on programmers who while competent at the computer left much to
be desired as statisticians. Nevertheless, the problem of bad random number
generators persists even among highly competent workers in the field. Thus
Donald Knuth touts an additive number generator which George Marsaglia later
discredits. How does Marsaglia accomplish this? He concocts a statistical test
which strings produced by the additive generator should pass if they derived
from a chance process, but in fact fail to pass.11

The picture is that of a game where programmer and statistician fight it
out. The programmer wants an efficient program that generates random num-
bers. The statistician wants a simple statistical test which discredits the random
numbers so generated. The programmer proposes, the statistician disposes. As
long as the statistician has no statistical test to discredit the random strings
generated by the program, the programmer wins; as soon as a successful sta-
tistical test is cooked up, the statistician wins. The game is no doubt fun, and
responsible for countless research articles. But it can never offer a conclusive
theory of randomness–the game has no resolution.

11See Knuth (1981, p. 27) for his generally glowing remarks about the additive number
generator. Marsaglia’s disaffection with this generator was voiced at ICR.
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4 Randomness as a Theory
Throughout this essay I have deliberately distinguished randomness, probabil-
ity, and chance. Chance I leave to coin tossing and quantum events. Whether
chance is reducible to a determinism or fundamentally indeterministic or simply
illusory is a debate I will not venture upon here. Probability, the measure theo-
retic probability of Kolmogorov from the 1930s, is a well-defined mathematical
theory inspired by chance processes and designed to model chance. Randomness,
to date, has been the scientist’s attempt to mimic chance using deterministic
methods.12

Let us now repudiate all pretensions to chance and probability, and require
but one thing of randomness: the systematic violation of a fixed set of patterns.
What will such a theory look like? First we need to delimit a collection of
potentially random objects. Let us call such a collection a candidate space and
denote it by Ω. The elements of Ω are candidates running for office–the honor
of being called random. Next we need to delimit a collection of patterns. The
patterns are, if you will, hurdles which the candidates must jump in order to
receive the distinction of being called random. More precisely, a candidate ω in
Ω is random if it violates all the patterns from a fixed collection of patterns. Let
us call such a collection of patterns a pattern space and denote it by P. Observe
that this is a relative notion of randomness–ω is random relative to P.
For each pattern p in P, a candidate ω will either fit or violate the pattern.

Thus a pattern is nothing more than a separation of the space Ω into two
nonempty, disjoint, and exhaustive subsets, where inclusion in one of the subsets
signifies fitting p, inclusion in the other, violating p. Now this can make for
some exceedingly dull mathematics, if we’re not careful. For, starting with the
candidate space Ω, we can reduce patterns to nothing more than a collection
of subsets of Ω, like say A1, A2, . . . , An. Then for some object ω to violate all
these patterns is simply for ω to fall outside each of A1, A2, . . . , and An. Thus
ω is random if it lies in the complement of A1 ∪ A2 ∪ · · · ∪ An. Moreover, if
this complement is empty, then Ω has no random elements with respect to the
pattern space {A1, A2, . . . , An}. At the highest level of generality this is all we
are doing when constructing or finding a random object. Thus, if the framework
I am proposing for randomness offers any interesting possibilities, it must do
so at a lower level of generality, where some rationale justifies the choice of
patterns relative to which candidates in Ω are deemed random (e.g., complexity
considerations).
Nevertheless, even at the purely set theoretic level some useful insights into

randomness can be gained. We are looking for random objects in the candidate
space Ω relative to the pattern space P. We take the patterns in P as subsets
of Ω so that fitting a pattern p in P coincides with membership in p. Let us

12By deterministic methods I mean methods which are obviously deterministic, like running
a computer program. Coin tossing is deterministic in the sense that Newtonian mechanics
offers precise and accurate prediction. Nevertheless, I take coin tossing to be the paradigm
for chance and ignore any underlying determinism.
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denote the random objects of Ω relative to P by
Ω/P =def {ω ∈ Ω | ω /∈ p for all p ∈ P}. (4.1)

Consider now two pattern spaces P and Ṕ. If Ṕ includes P, then the Ω/Ṕ
cannot contain more random elements than Ω/P. This accords with intuition,
for the more patterns a potentially random element must violate, the less likely
it is to attain this distinction. The patterns set up hurdles which the candidates
in Ω must jump to qualify as random. Since Ṕ contains more hurdles than P,
the candidates have a harder time qualifying relative to Ṕ than to P.
It is also clear from this general formulation that there can be too many

patterns, or that the patterns might be ill-chosen, so that Ω/P is empty. Thus
we might set up too many hurdles so that no candidate can qualify as random.
This was precisely the problem with von Mises’s (1936) collectives. His idea
was to delineate the random infinite sequences of 0s and 1s modeled on the
endless tossing of a fair coin. The candidate space Ω was therefore {0, 1}∞
and a proposed random sequence was to have 0s and 1s evenly distributed (i.e.,
same proportion of 0s as 1s). von Mises wanted to push this notion of even
distribution as far as he could. Thus he wanted to require even distribution of
0s and 1s across all subsequences of a potentially random sequence. This proved
too stringent a requirement.
More formally, von Mises entertained the following hope: his candidates ω

comprised all functions from the natural numbers N = {0, 1, 2, ...} to the binary
set {0, 1}, i.e., the infinite sequences of 0s and 1s. His patterns were induced by
infinite subsets of N like S = {s0 < s1 < s2 < · · · }. As von Mises saw it, for ω
to be random it should be evenly distributed on any such S–randomness after
all was to mimic the tossing of a fair coin. Thus a random ω was to satisfy

lim
n→∞

1

n

n−1X
i=0

ω(si) =
1

2
(4.2)

for all infinite subsets S of N.
But this presents a problem. There are simply too many such subsets S for

any candidate ω to satisfy (4.2) for all S. This is readily seen. A random ω
must certainly be evenly distributed on all of N and must therefore satisfy

lim
n→∞

1

n

n−1X
i=0

ω(i) =
1

2
. (4.3)

Now if we choose S to be that (infinite) subset of N on which ω is identically
1, then on S

lim
n→∞

1

n

n−1X
i=0

ω(i) = 1. (4.4)

ω certainly fails to be evenly distributed on this S. Hence for any purportedly
random ω we can always find a subset of N on which ω looks anything but
random.
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By permitting too many patterns, we in effect commit the by now familiar
post hoc fallacy of randomness, i.e., we concoct patterns to test the randomness
of an object after the object has already been presented. In the preceding
example, to obtain the limit in equation (4.4) we needed to constructed S on
the basis of the purportedly random object itself–ω. This, as we have observed,
is analogous to the old statistical fallacy of selecting statistical hypotheses after
the experiment is over and its results have been examined. Such a methodology
is always disingenuous.
Because von Mises’s original idea could not be made to work, attempts

were made to salvage it. The obvious move was to restrict the subsets S for
which ω had to satisfy (4.2). Thus it was suggested that (4.2) be required
only for the infinite subsets of N that were recursively enumerable (r.e.) (cf.
Church, 1940). Since there are only countably many programs to generate
these sets, the collection of r.e. sets itself is countable. Moreover, measure
theoretic considerations imply that almost every candidate ω satisfies (4.2) for
all Ss in such a collection.13 Thus the patterns induced by the infinite r.e. sets
leave plenty of infinite sequences that are random with respect to this countable
pattern space.
While this example illustrates the theory of randomness I am after, it is

not the best advertisement for my theory. The problem with infinite random
sequences is that they remain random irrespective of their finite initial segments.
Thus for an infinite sequence of 0s and 1s, one can change the first 101000

entries all to 0 without affecting the randomness of the string. The randomness
of an infinite string can only be ascertained by taking into account the entire
limiting behavior of the string. This is bad news for anyone interested in the
practical applications of randomness. Thus in the sequel I shall concentrate on
randomness in finitary contexts.
So what should a theory of randomness look like? Certainly we must start

with a collection of potentially random objects, the candidate space Ω. Next
we must find a pattern space P with respect to which the objects in Ω can
be random. P is both straightforward and problematic. P is straightforward
because its patterns enable us quickly to decide whether a purportedly random
object fits the pattern or not (on this view the patterns reduce to binary par-
titions of Ω). P is problematic because its patterns must be selected according
to a rationale which justifies calling the elements of Ω/P random. Set theoretic
considerations enter here: P must be big enough and small enough. It must be
small enough to keep Ω/P from being empty–P can always be augmented to
make Ω/P empty. On the other hand, if Ṕ includes P, and if Ω/Ṕ is nonempty,
then Ṕ is preferable P. Thus P must contain all the patterns which random
objects cannot legitimately fail to break.

13 I am assuming the standard probabilistic model for coin tossing: the infinite product
space of {0,1} together with the uniform product measure.

15



5 Randomness in Practice
Randomness as the systematic breaking of fixed patterns has been implicit in
past research. Just before introducing his computational complexity approach to
randomness, Kolmogorov (1965a) wrote a paper entitled “On Tables of Random
Numbers,” whose mathematical content was pure combinatorics. In this paper,
Kolmogorov addressed the problem of constructing random numerical sequences
of a fixed finite length. Having decided on a fixed length n (some positive natural
number), he then proceeded systematically to rule out sequences which could
not be random according to a certain frequentist criterion of randomness. These
systematic exclusions constituted the patterns which the nonrandom sequences
failed to violate. In this section I shall incorporate Kolmogorov’s work on finite
random sequences into the framework I am developing. My treatment will
introduce simplifying assumptions that involve no loss of generality, but will
also extend certain ideas implicit in Kolmogorov’s original work.
Our candidate space Ω is the collection of 2n sequences of 0s and 1s having

length n. A candidate ω is therefore a function from {1, 2, . . . , n} into {0, 1}. As
with von Mises’s collectives, our motivation for randomness is even distribution:
the proportion of 0s and 1s for random candidates ω should be about the same.
Hence, insofar as the frequencies fail to be evenly distributed, patterns are
matched and nonrandomness is evidenced. The totality of patterns that might
interest us is induced by the collection Σ which comprises all the nonempty
subsets of the indexing set for Ω, i.e., the nonempty subsets of {1, 2, . . . , n}. For
any S in Σ the extent to which a candidate ω is random corresponds to how
close

1

|S|
X
i∈S

ω(i) (5.1)

is to 1
2 . In expression (5.1) |S| denotes the cardinality of S (which is greater

than zero because of how we defined Σ). Expression (5.1) is the proportion of
1s ω has on the set S.
Now to require that expression (5.1) exactly equal 12 is too stringent a condi-

tion. If for example the cardinality of S is a prime other than 2, then no candi-
date ω can be random with respect to S–expression (5.1) could then never take
the value 1

2 . Thus we want (5.1) close to
1
2 while at the same time permitting

some slack. We therefore fix a positive � and stipulate that a candidate ω breaks
the pattern prescribed by S if¯̄̄̄

¯ 1|S|X
i∈S

ω(i)− 1
2

¯̄̄̄
¯ < �.14 (5.2)

14 It may seem counterintuitive to speak of ω as breaking the pattern induced by S if this
inequality is satisfied. Nevertheless, the underlying intuition derives from the probability of
coin tossing which dictates that w should be evenly distributed if it is random. Since we have
defined randomness as the breaking of patterns, for ω to satisfy inequality (5.2) must therefore
be identified with the breaking of a pattern. This point is strictly a question of terminology.
See also note 3.

16



These observations are at the root of Kolmogorov’s (n, �)-random binary se-
quences.
A natural question now arises: Given n and �, for which subcollections of

S and candidates of Ω is inequality (5.2) satisfied? Really two questions are
involved here: (1) Given a collection of Ss, can we find a candidate ω that
satisfies (5.2) for each of these Ss? (2) Given ω, for which Ss is (5.2) satisfied?
The first question asks if we can find a random object with respect to a preset
collection of patterns. The second asks for the patterns which render a fixed
candidate ω random. The second question is new and does not arise in the work
of Kolmogorov and his successors. Kolmogorov does address the first question,
though from a limited perspective. Let us examine these questions in turn.
For a fixed collection of Ss is there any candidate ω that violates all the in-

duced patterns and therefore is random? A number of constraints are struggling
against each other. If � is bigger than 1

2 , (5.2) is always satisfied and everything
is random. Thus we shall want � less than 1

2 . Once � is fixed it will generally be
true that the number of sets S with respect to which a candidate ω is random
(i.e., breaks the pattern indicated in (5.2)) will increase with the sequence length
n. But if � is too small, then we become guilty of requiring (5.1) to equal 12 (�
too close to zero in inequality (5.2) is equivalent to expression (5.1) equaling 1

2
exactly).
Other constraints are less obvious. For instance, sets S whose cardinality is

very small relative to n will generally be unsuitable for checking the randomness
of a candidate. To take an extreme example, if S is a singleton (i.e., contains
only one element), then expression (5.1) will be either 0 or 1 implying that for
any reasonable � inequality (5.2) will be violated. Thus, with respect to Ss that
are singletons no candidate can be random. Within our framework, any pattern
space P that includes at least one singleton has no random elements; in this
case Ω/P is empty.
For a more complicated example, consider sets S containing two elements.

To simplify calculations let us assume that n is even (n = 2k) and let us restrict
our attention to candidates ω which have the same number of 0s and 1s (i.e., k).
(These conditions can be eliminated without affecting our general conclusions.)
We find that,

1

n

nX
i=1

ω(i) =
1

2
, (5.3)

µ
2k

2

¶
sets S have 2 elements, (5.4)

2

µ
k

2

¶
sets S with 2 elements satisfy

1

|S|
X
i∈S

ω(i) = 0 or 1, (5.5)

k2 sets S with 2 elements satisfy
1

|S|
X
i∈S

ω(i) =
1

2
, and (5.6)

µ
2k

2

¶
= 2

µ
k

2

¶
+ k2. (5.7)
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Thus, for about half the sets S with two elements the frequencies are exactly
correct (when (5.6) obtains), whereas for the other half the frequencies are
completely off (when (5.5) obtains). Moreover, by a trivial inclusion-exclusion
argument one can choose k such sets S (e.g., {1, 2}, {1, 3}, . . . , {1, k}, and {1, k+
1}) for which at least one of these sets will satisfy (5.5)–regardless of candidate.
In other words, one can find k patterns induced by sets S of cardinality 2 which
render all candidates nonrandom. If we relax our initial assumptions, we observe
that for arbitrary n and � < 1

2 , we can find approximately
n
2 sets S with 2

elements for which no candidate can be random (no candidate can violate all
the induced patterns). Within our framework, for such a pattern space P, Ω/P
is empty.
The sets S in Σ which really interested Kolmogorov were those which, unlike

the two preceding examples, included a substantial portion of the indexing set
{1, 2, . . . , n}. Such sets S were generated algorithmically, and tended to induce
patterns one would like to see “genuinely random” sequences break. Thus the
first S to be considered was the entire indexing set {1, 2, . . . , n}–any random
object ω should be evenly distributed within � on this set. Next, one should con-
sider sets S containing alternate terms of the indexing set: {1, 3, 5, ..., 2bn+12 c−1}
and {2, 4, 6, ..., 2bn2 c} (brackets here indicate the greatest integer function). Kol-
mogorov found that by generating sets in this way he could get

1

2
e2n�

2(1−�) (5.8)

sets in Σ for which at least one candidate w was random.15 Thus the number of
patterns for which random objects exist is exponential in the sequence length
n.16

With (5.8) Kolmogorov determined an upper bound on the number of pat-
terns he could get away with and still obtain a random candidate. His algorithm
fixed the patterns, (5.8) bounded the number of patterns, and with this infor-
mation Kolmogorov proceeded to search for a random candidate. Our second
question reverses all of this: given a fixed candidate ω for what patterns (Ss)
is ω random? Which pattern spaces P render ω random? Kolmogorov failed
to address this question. Nevertheless, it offers new insights into randomness
and underscores the distinguished role permutations (and more generally group
actions) play in any theory of randomness based on patterns.
To indicate why this second question is important consider the following

example. Suppose the sequence

ω = 0011100101 (5.9)

15The number in (5.8) is essentially the reciprocal of the probability bound in Bernstein’s law
of large numbers, a sharp combinatorial inequality arising from the binomial distribution–see
Kranakis (1986, p. 94).
16Compare this with the time-complexity approach to randomness for which polynomial-

time functions are insufficient to distinguish pseudo-randomness from genuine randomness.
In the present example a potentially random sequence of length n must be checked against a
collection of patterns whose cardinality is exponential in n, not merely polynomial in n.
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is an (n, �)-random sequence for n = 10 and � > 1
10 . We find that on S0 ={1, 2, ..., 10}, ω is evenly distributed. On S1 = {1, 3, 5, 7, 9}, S2 = {2, 4, 6, 8, 10},

S3 = {1, 2, 3, 4, 5}, and S4 = {6, 7, 8, 9, 10} ω is within 1
10 of being evenly

distributed. Consider now the following permutations of the indexing set S0 =
{1, 2, ..., 10}:

σ = (1 8)(2 10) (5.10)

τ = (2 3)(5 6) (5.11)

σ, for instance, permutes {1, 2, ..., 10} by interchanging 1 and 8, as well as 2
and 10. If we now modify ω by applying σ and τ , we find that the resulting
sequence of 0s and 1s is anything but random:

ω ◦ σ = 1111100000 (5.12)

ω ◦ τ = 0101010101 (5.13)

On S3 and S4 ω ◦ σ fails in the worst possible way to be evenly distributed;
on S1 and S2 the same holds for ω ◦ τ . But the permutations that altered ω
also alter the sets (patterns) S1 through S4. Thus σ transforms S3 and S4
into σS3 = {3, 4, 5, 8, 10} and σS4 = {1, 2, 6, 7, 9} on which ω ◦ σ is evenly
distributed within 1

10 , whereas τ transforms S1 and S2 into τS1 = {1, 2, 6, 7, 9}
and τS2 = {3, 4, 5, 8, 10} on which ω ◦ τ is evenly distributed within 1

10 .
There is a lesson to be learned. Among 0-1 sequences of length 10 having the

same number of 0s as 1s, ω◦σ is as nonrandom as they get. And yet with respect
to some Ss ω ◦ σ is just as random as ω. In fact, whenever ω is random with
respect to S, ω◦σ is random with respect to σS, and ω◦τ is random with respect
to τS. Randomness really depends on how one looks at things. Patterns S0, S1,
S2, S3, S4 are the sorts of patterns humans are comfortable with, to which our
visual and perceptual apparatus resonates. We expect random sequences to be
evenly distributed across such nice patterns. If on the other hand our perceptual
apparatus were so configured that some permutation of these patterns appeared
more natural (e.g., σS0, σS1, σS2, σS3, σS4), then our sense of randomness
would be altered.17

6 The Role of Group Actions
Let me now summarize our work on randomness from an abstract point of view.
We are given a collection of objects, the candidate space Ω, where we want to find
random objects. Randomness is understood as violating patterns. Generally
there will be a collection comprising all conceivable patterns that might interest
us (cf. Σ in the previous section). Let us refer to such a collection as a complete
pattern space and denote it by F . While a complete pattern space will contain
all patterns that might conceivably interest us, it will usually be so broad as to
leave no room for randomness–every candidate in Ω is sure to fit some pattern

17 I should stress that I am after a mathematical, not a perceptual, theory of randomness.
Still, there are parallels–see Diaconis (1981).
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in F so that no candidate can be random with respect to all of F . Thus typically
Ω/F is empty (if not, specify Ω/F and your problems are over).
For this reason we shall normally want to consider pattern spaces P that are

proper subsets of F . If we are confident that the pattern space P adequately
captures what we want of randomness in Ω, and if it is true that Ω/P is non-
empty, then our task reduces to specifying Ω/P, i.e., finding those candidates ω
which violate all the patterns in P. In the last section Kolmogorov’s algorithm
for generating patterns provided just the pattern space P which Kolmogorov
considered relevant to the randomness of finite 0-1 sequences. The bound given
in expression (5.8) reflected how large P could be taken while keeping Ω/P
nonempty.
Although the complete pattern space F will be sure to contain all patterns

of interest, generally it is not clear whether a given pattern space P will provide
the “right” notion of randomness for a set purpose, much less a universally
correct notion of randomness. Pattern spaces are not etched in stone. They do
not come with a natural rank ordering enabling us to decide which pattern space
offers “better” randomness than another. They do not come with flags which
mark them as the true carriers of randomness. If for some reason P were etched
in stone, then the only remaining task would be to delineate the members of
Ω/P. But since this is generally not the case, it is convenient to reverse the
picture. Thus we may begin with a candidate ω and ask for which patterns is
ω random. Denote the patterns in F for which ω is random by F(ω). Call this
the pattern space on F induced by ω. ω violates all the patterns in F(ω) and
is a member (possibly the only one) of Ω/F(ω).
The obvious problem now is to relate the induced pattern spaces F(ω) for

various candidates ω. This I believe is best accomplished by means of group
actions. We consider the action of a group Γ on the candidate space Ω. Let us
represent the group Γ multiplicatively, denoting the identity element by e. By
saying that Γ acts on Ω, we mean that every element of the group induces a
function from Ω to itself such that

(1) e is the identity transformation on Ω.

(2) for every g and h in Γ g(hω) = (gh)ω, i.e., composition of the functions
induced by Γ mirrors the group multiplication.

It is immediate from (1) and (2) that the induced functions are actually permu-
tations (bijections) on Ω.18

From our perspective the group action of Γ on Ω becomes interesting when
it in turn induces a group action on the complete pattern space F . To see that
a group action on Ω will induce a group action on patterns and pattern spaces,
it is enough to note that an individual pattern p is ultimately just a subset
of Ω. Thus for a group element g in Γ it is natural to consider the pattern
gp = {gω | ω ∈ p}. The pattern spaces P and the complete pattern space
F are of course composed of such patterns p. Thus for g in Γ and a pattern

18See Hungerford (1974, pp. 88-92) for more details.
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space P it makes sense to consider gP = {gp | p ∈ P}. Since F ’s distinguishing
characteristic as a pattern space is its completeness–it must contain all patterns
conceivably relevant to randomness–there is no problem in choosing F so large
that it is closed under the group operation. Thus we may assume that for all g
in Γ, and all p in F , gp is also in F . With this closure property Γ does indeed
induce a group action on the complete pattern space F , and sends pattern spaces
P to pattern spaces gP.
With a group Γ acting on both Ω and F , it becomes possible to compare the

randomness of candidates ω and ώ with respect to induced pattern spaces F(ω)
and F(ώ). If for instance ώ is in the orbit of ω (i.e., if there is some group element
g for which gω = ώ), then we can ask how F(ω), gF(ω), and F(ώ) = F(gω) all
compare. If Γ is transitive on Ω (i.e., if any candidate can be accessed from any
other candidate via the group action), then all candidates can be compared in
this way. An interesting question is whether gF(ω) equals F(gω). If so, then
the randomness of ω and that of ώ = gω are entirely symmetrical–the patterns
which w breaks to be random and those which ώ breaks to be random are mirror
images under the group action.
Note that this abstract account of group actions was implicit in Kolmogorov’s

example of finite random sequences described in the last section. There Ω was
the collection of 0-1 sequences having a fixed length n. The group acting on
Ω was the symmetric group on n characters, Sn, which serves as our Γ. An
element g in Γ (= Sn) is of course just a bijection on {1, 2, . . . , n}. Thus for g
to induce a function on Ω, it must be interpreted as follows: g(ω) = ω ◦ g. In
effect, g takes any sequence ω of 0s and 1s and rearranges these 0s and 1s in a
different order.
Γ also induces a group action on the complete pattern space Σ, which com-

prises the nonempty subsets S of {1, 2, ..., n}. Under the action of a group
element g, S is sent to its natural image under the symmetric group, namely
gS. Note that S in Σ is not itself a subset of the candidate space Ω. But when
such an S is used to pick out candidates ω via inequality (5.2), S specifies a
pattern on (i.e., subset of) Ω, which we can denote by p(S). We find a perfect
consistency in the way the group action transforms the elements S of Σ, and
the way the action transforms the patterns induced by such Ss: gp(S) = p(gS)
for all g in Γ, i.e., the pattern induced by gS is just the pattern induced by S
and translated by g.
This concludes our summary of randomness. I have described from an ab-

stract point of view our theory of randomness as it currently stands. My aim
has been to make explicit the unspoken intuitions motivating the examples in
Sections 4 and 5. With this abstract exposition in hand, I want now to focus on
group actions and argue that they can be used to extend our notion of random-
ness. A prime intuition for randomness is the idea of mixing. A fresh deck of
cards, for instance, is not “random” until it has been thoroughly shuffled, i.e.,
until the cards have been adequately mixed.19 In ergodic theory one considers

19The statistician Persi Diaconis, a key organizer of ICR, has done significant work in the
area of group actions and randomness. As both a professional magician and statistician, he
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mixing transformations which take distinct events and so intertwine them that
they become probabilistically independent.20 In both these examples proba-
bilistic considerations come to the fore, making it impossible to speak of a given
fixed object as random in the way I am proposing. But the intuitions here are
strong, and it is worth considering how these intuitions can work for us.
Let us for the moment think of a group Γ as a bag of gadgets for mixing

things up. For concreteness, one might imagine a collection of blenders. Some
of the blenders are broken and do no effective mixing at all. Some can only
chop and grate. Others can liquefy. But the blenders best at mixing are the
industrial strength blenders which operate at 20,000 rpm. Similarly, the group
elements of Γ will vary in how well they mix under a group action. For instance,
the identity e will be utterly useless for mixing things up. Throughout these
musings I disregard the actual objects Γ is mixing. In the end we shall want
Γ to mix the candidate space Ω. But for now I am interested in establishing
objective criteria for how well the elements of Γ mix, independent of what space
Γ is acting upon. Suppose this is the case–suppose we are able to rank the
elements of Γ by how well they mix. Furthermore, let us assume that whatever
we mean by mixing in Γ, this notion is well-defined and intuitively plausible. In
particular, our intuitions for mixing and randomness should correspond. How
then can we exploit the mixing properties inherent in Γ to extend our theory of
randomness?
For concreteness, let us imagine a bounded function µ from the group Γ into

the nonnegative reals [0,∞) which takes on higher values as group elements
become increasingly good at mixing. Thus for group elements g and h, if µ(g) <
µ(h), then h is better at mixing than g. Since µ models intuition, µ attains its
lowest value at µ(e), and is symmetric with respect to group inversion, i.e.,
µ(g) = µ(g−1) for g in Γ. Let us call µ a mixing measure on Γ.21 Since our
intuitions about mixing and randomness correspond, we want to specify those
elements h which are best at mixing, i.e., those h for which µ(h) equals or is
very close to

sup
g�Γ

µ(g). (6.1)

Observe that this supremum exists inasmuch as µ is assumed to be bounded.
With a mixing measure like µ the problem of finding the best blenders in Γ, if
you will, becomes a straightforward optimization problem.22

has obtained results in the mathematics of card shuffling (which is nothing but a group action
in disguise) which has recently brought him and his colleague Dave Bayer to the public eye
(cf. Time Magazine, 22 January 1990, p. 62). Their general finding was that 7 shuffles
are necessary to take a nonrandom deck to a random state. See Diaconis (1988) for his
general approach to randomness via groups. Let me stress that his approach is fundamentally
probabilistic.
20 See Mackey and Lasota (1985, pp. 63-65) for some striking computer generated pictures

that reinforce the abstract intuitions motivating ergodic theory.
21Mixing measures are not measures in the sense of countably additive set functions. Rather,

they are functions on a group whose extrema provide optimally mixing group elements.
22At least conceptually such optimization problems are straightforward. In practise they

can prove tricky.
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Suppose now we have solved the optimization problem and found an opti-
mally mixing element of Γ, call it h. Suppose further that Γ is acting on the
candidate space Ω. Our task is to find a random element in Ω (random taken
in its intuitive sense with no explicit reference to patterns yet). How shall we
do it? A naive first attempt might be to take an arbitrary candidate ω, apply
h to it, and call the result hω random. But this presents a problem: if ω is
(intuitively) nonrandom and if ώ equals h−1(ω), then hώ is just the nonrandom
ω. By this trick, any optimally mixing group element h has images under the
group action that are nonrandom. Yet surprisingly, this trick indicates a way of
using h to obtain random elements from Ω. If we can find a candidate ω that is
intuitively as nonrandom as possible, and if we apply an optimally mixing group
element (by symmetry both h and h−1 will do) to ω, then we get a candidate
ώ, which I claim is random.
Certainly applying h to an arbitrary candidate can produce nonrandomness,

but why should applying the optimally mixing group element h to a definitely
nonrandom candidate ω yield a random hω? Applying an optimally mixing h to
an arbitrary candidate can in effect undo whatever randomness (still speaking
intuitively) was already in the candidate. But an optimally mixing h applied
to a definitely nonrandom ω must issue in a random candidate hω because h
cannot undo any of ω’s randomness. In effect, mixing will take something or-
dered and render it confused, but may take something confused and render it
intelligible. It is worth recalling the conclusion of that interdisciplinary con-
ference on randomness: We know what randomness isn’t, not what it is. If we
know what randomness isn’t, then we know some definite, prototypical instance
of nonrandomness (epitomized in the candidate ω). For such an instance its
mixture with an optimally mixing transformation must be random.
Let us formulate these ideas within our framework: we are given the can-

didate space Ω, the complete pattern space F , and a group action of Γ on Ω
which extends to F . Our task is to find a random object in Ω. We find a
prototypically nonrandom candidate ω in Ω–often this is easy. Next we find
an optimally mixing group element h in Γ. ω is intuitively nonrandom, but
formally random relative the induced pattern space F(ω). On the other hand,
hω as an optimal mixing of a nonrandom object is intuitively random, and at
the same time formally random with respect to the translated pattern space
hF(ω) (which under suitable symmetry conditions of the group action on F can
be just F(hω)).
It remains to spell out what we mean by an optimally mixing group element

h in Γ. An example will help. Let Ω be the candidate space of all 0-1 sequences
having length 100 and having the same number of 0s as 1s (50 of each). Take
the complete pattern space F to be all nonempty subsets of Ω. Take Γ to be
the symmetric group on 100 characters, S100. For g in Γ and ω in Ω, gω is the
composition ω ◦ g, which is just ω with its indices rearranged. In fact, because
each candidate has the same number of 0s as 1s, for any two candidates ω and
ώ there is a group element g in Γ which takes ω to ώ. Thus Γ is transitive on
Ω.
Next we must find a prototypically nonrandom object from Ω. I suggest a
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sequence we have seen before (see Section 2, sequence (H)):

11111111111111111111111111111111111111111111111111

00000000000000000000000000000000000000000000000000.

Call this sequence of 50 1s followed by 50 0s, ω. Whatever we mean by random
elements of Ω, ω must certainly lie at the other end of the spectrum. Whether
ω is the most nonrandom sequence in Ω, or whether some other candidate is
more nonrandom, depends on criteria for judging nonrandomness which will be
situation specific. I don’t take this to be a problem inasmuch as acute cases
of nonrandomness are obvious. In the present example a complexity approach
à la Kolmogorov will offer one way of seeing that ω is simple and therefore
nonrandom. Since we know what randomness isn’t, I take finding prototypically
nonrandom elements to be the least of our problems.
This leaves us with having to find an optimally mixing element h in Γ. What

will such an element look like and how shall we go about finding it? I leave a
general theory of optimally mixing group elements for another time, but let me
offer some heuristics for the present case. Γ (= S100) is by definition the set of
all permutations on {1, 2, 3, . . . , 100}. Thus to think of Γ as mixing is to ask how
its group elements mix this set. Since {1, 2, 3, . . . , 100} is the indexing set for
the sequences in Ω, it is plausible to connect randomness in Ω with the mixing
of {1, 2, 3, . . . , 100} by Γ.
Now there are many ways to understand permutations as mixing {1, 2, 3, . . . ,

100}. Since permutations can be written as the product of transpositions, one
may ask what is the minimal number of transpositions for representing an ar-
bitrary permutation g. Let us call this minimal number τ(g). The induced
function τ is bounded by 99 (= n− 1) on Γ,23 takes values in the natural num-
bers, assumes its lowest value of 0 at the identity (τ(e) = 0), and is symmetric
with respect to inverses (τ(g) = τ(g−1)). For permutations different from the
identity, τ is strictly positive. Thus one measure of how well h mixes is how
close τ(h) is to

sup
g�Γ

τ(g). (6.2)

τ is a mixing measure, but not an effective one. Essentially, τ makes sure
that its optimally mixing elements move all the elements of {1, 2, 3, . . . , 100} to
points other than themselves. Thus for the permutation h which sends i to i+1
mod 100 (i.e., which shifts all numbers less than 100 up 1 and takes 100 down
to 0), τ(h) will assume the supremum in (6.2).24 Under this h the transformed
sequence hω is almost as nonrandom as the original ω. hω is just

11111111111111111111111111111111111111111111111110

00000000000000000000000000000000000000000000000001.

23This follows directly from the cycle-structure decomposition of permutations. See Hunger-
ford (1974, pp. 46—51).
24The permutation (1 2 3 . . . 100) can be expressed most briefly as the product of the

following 99 transpositions: (1 2)(1 3)(1 4). . . (1 100).
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A more promising approach to mixing is through a type of mixing mea-
sure I call an explosive measure. If a group acts on some structured set (like
{1, 2, 3, . . . , 100} which is ordered, has a natural metric, etc.), it is natural to
think of mixing as the breaking or exploding of this structure.25 For instance,
{1, 2, 3, . . . , 100} possesses a metric structure d given by the absolute value of the
difference: d(m,n) = |m− n|. One can imagine a permutation g in Γ exploding
the metric structure d if it takes m and n close together (resp. far apart) and
sends them to numbers far apart (resp. close together), i.e., if d(m,n) is small
(resp. large), then d(gm, gn) is large (resp. small). This explosive property can
be captured by the following mixing measure:

ξ(g) =
X

1≤m<n≤100

·
d(gm, gn)

d(m,n)
+

d(m,n)

d(gm, gn)

¸
, (6.3)

which defines ξ for all g in Γ.26 ξ is minimal at the identity e and gets big
precisely for those g that break the metric structure. An optimally mixing
group element h according to this mixing measure is one which satisfies

ξ(h) = sup
g�Γ

ξ(g). (6.4)

Still other mixing measures can be proposed. On {1, 2, 3, . . . , 100} consider
the metric d́(m,n) = min(|m− n| , 100 − |m− n|). This alternate metric on
{1, 2, 3, . . . , 100} treats the natural numbers between 1 and 100 as evenly spaced
points around a circle. With this metric 1 and 100 are adjacent. In equation
(6.3), if we substitute d́ for d we obtain an alternative mixing measure, which we
can denote as ζ. Other modifications can be introduced as well. The group Γ
may include a subset ∆ which we definitely want to exclude from consideration
as mixing elements. Thus in Γ (= S100) we may want to exclude permuta-
tions with certain cycle structures. In this case finding optimally mixing group
elements in Γ entails finding suprema for τ , ξ, and ζ over the reduced set Γ−∆.
It is evident that any weighted average (convex linear combination) of mixing

measures on a given group is again a mixing measure. Thus we may combine
the mixing measures τ , ξ, and ζ into a super-mixing measure w1τ +w2ξ+w3ζ,
where the weights are positive real numbers summing to 1. Just how the weights
should be chosen will depend on the relative importance of the measures τ , ξ,
and ζ to mixing, as well as the relative sizes of the mixing measures (ξ is always
at least n2 − n whereas τ is never more than n). Having chosen the mixing
measures, the weights, and the set ∆ with care, we now search for h in Γ that
satisfies

w1τ(h) + w2ξ(h) + w3ζ(h) = sup
g�Γ−∆

[w1τ(g) + w2ξ(g) + w3ζ(g)] , (6.5)

25This is clearly reminiscent of pattern breaking in randomness, but there are some differ-
ences.
26This summation has an integral formulation for compact metric spaces using (semi-) uni-

form probabilities. See Dembski (1990) for the appropriate measure to use in the integration.
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and thereby transforms an intuitively nonrandom ω into an intuitively random
hω. Of course, ω will be formally random with respect to F(ω), whereas hω
will be formally random with respect to F(hω) = hF(ω). This concludes the
example.
In closing this section I want to say a word about constructing mixing mea-

sures, and more generally about criteria for optimally mixing group elements.
My approach in the last example was strictly ad hoc–I imagined properties I
thought optimally mixing group elements should possess for the given group Γ,
and then constructed mixing measures to model these properties. Such mixing
measures set up criteria for optimal mixing. How good these criteria are, how
good they can be made, and how to implement these criteria computationally
are questions I leave for another time. In the preceding example I have not even
computed an optimally “explosive” h in line with (6.3). The solution to these
problems is not straightforward and requires a deeper analysis than is possible
in this expository paper. Still, I hope to have convinced the reader not only
that groups can possess intrinsic mixing properties relevant to randomness, but
also that these mixing properties can be effectively specified.

7 Philosophical Postscript
Whatever happened to von Neumann’s allegation of sin? It has frankly lost its
sting. Redefinition is always an effective way to alter moral strictures, and the
present case is no exception. von Neumann’s guilty conscience derived from a
paradox: deterministic systems were to model random systems, and yet random
systems insofar as they were modeled by deterministic systems could not by
definition be random. In this paradox von Neumann conflated randomness and
chance. With this identification the paradox is indeed unresolvable. But when
randomness is redefined as the breaking of patterns, the paradox disappears.
Questions of determinism, chance, and probability no longer enter. At issue
now is whether an object exists and can be found that breaks the patterns.
Something like Kant’s Copernican revolution is going on here. Certainly I

don’t mean to place this essay in the company of Kant’s first Critique. But
there is a parallel in the way Kant’s revolution changed the relation between
object and knowledge, and the way my redefinition changes the relation between
random object and pattern. Prior to Kant knowledge had conformed to object
with object causally influencing knowledge. But with Kant (1927, p. 22) objects
must henceforth conform to knowledge. As Henry Allison (1983, p. 30) observes,

The point to be emphasized is that this “changed point of view”
brings with it a radically new conception of an object. An object
is now to be understood as whatever conforms to our knowledge,
and this . . . means whatever conforms to the mind’s conditions
(both sensible and intellectual) for the representation of it as an
object. Consequently, an object is by its very nature something
represented. . . .
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Similarly, the random objects I advocate reflect a changed point of view. In
times past random objects were random because they mimicked chance. Forg-
eries they were. As long as the counterfeit looked specious, one could pretend
it was the product of chance. But the technology for uncovering these forgeries
was always improving. The latest statistical test was ever threatening to expose
the “well-established” random object. However, within the new framework, the
“conditions for the possibility” of such objects, to use a Kantian phrase, hence-
forth rests with the patterns that render these objects random, and not with the
objects themselves. Patterns become strictly prior to random objects. Without
patterns, objects are just objects, not random objects.
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