

Building 'smart grid' technology to control the flow of electricity between the grid and plug-in vehicles

Delivering Real-Time Charging Management to Utilities

Why is Charging Management Important?

- Allows the existing grid to support wide-scale plug-in adoption
 - Avoids damaging grid stress and delays expensive infrastructure investment
- Enables use of renewable energy as vehicle "fuel"
 - Allows charging to be synchronized with the availability of wind or solar power, further reducing greenhouse gas emissions that cause global warming
- Increases integration of clean power in energy generation
 - Plug-in vehicles can serve as inexpensive storage for renewable energy that can be used in generating electricity
- Creates opportunities to reduce the cost of electric transportation
 - Utilities, eager for participation in charging management programs, will offer drivers discounted electricity rates for plug-in vehicles

Ongoing 2008 Charging Management Trials

Utility/Laboratory	Vehicles	Trial	Objective
Xcel Energy, NREL	6 Ford Escapes	Smart Charging V2G	Deploy first V2G capable fleet Explore storage, ancillary services production
Austin Energy, ERCOT	2 Toyota Priuses	Smart Charging	Focused on wind power integration
Idaho National Laboratory (INL)	57 plug in hybrids (various models)	Data Logging	Real-time data capture, deployed in WA, CA, OR & HI
Seattle City Light, INL	13 Toyota Priuses	Smart Charging	Evaluate impact of urban plug-in fleet on the grid
EPRI, PG&E	2 AC Propulsion eBoxes	Smart Charging V2G	Identify communication protocol requirements
U.C. Davis, INL	13 Toyota Priuses	Driver Performance Feedback	Determine impact of performance data on driver behavior

Considerations for a National Demonstration

What Can Be Learned?

- Plug-in vehicle performance
 Mileage, emissions, fuel cost
- Impact on the grid Points of stress
- Requirements for utilizing renewable energy
- Utility needs
 Charging management, roaming, billing
- Driving /charging behavior of vehicle owners
- Best locations for charging infrastructure
- Requirements for driver participation

What Is Required?

- Clear Goals & Objectives
- Vehicles & Drivers
- Utility Participation
- Charging Management Solution
- Charging Infrastructure
- Detailed Data Logging

