Regional PHEV Demonstration A Grid Perspective

Michael Kintner-Meyer, Ph.D. Pacific Northwest National Laboratory

Jump Start To A Secure, Clean Energy Future Redmond, WA May 7th, 2007

Contact: email: michael.kintner-meyer@pnl.gov

phone: 509.375.4306

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

U.S. Grid Capability

The idle capacity of the U.S. grid could supply 73% of the energy needs of today's cars, SUVs, pickup trucks, and vans...

without adding generation or T&D capacity

Potential to displace 6.7 MMbpd (equiv. to 52% of net imports)

73% electric (158 mill. Vehicles

- More sales + same infrastructure = downward pressure on rates
- Reduces CO₂ emissions by 27%
- Emissions move from tailpipes to smokestacks (and base load plants) ... cheaper to clean up
- Introduces vast electricity storage potential for the grid

Smart Grid Can Deliver the Electricity for Millions of PHEVs

ELECTRIFYING THE TRANSPORTATION SECTOR WITH Plug-in Hybrid Electric Vehicles

"Unused off-peak U.S. grid capacity could supply 70% of the energy for today's light vehicles and reduce foreign oil imports by 50%, without adding generation or transmission." – Pacific Northwest National Laboratory
"Nationwide adoption of plug-in hybrids will increase the use of domestically produced electricity and can ultimately reduce greenhouse gas emissions by up to 800 million tons per year." – EPRI
"Rarely in history has an emerging technology offered such an attractive opportunity ... as both a new load and resource, to enhance overall performance of the electric power infrastructure." – National Renewable Energy Laboratory
"Working with automakers and local utilities, we need to understand how large numbers of PHEVs will be used, and their effect on the grid." – University of Michigan

Perfect Valley Filling ECAR Summer Load Profile

Charge each PHEV: 1.4 kW charge (120V, 12A) for 7 hours=10 kWh

Smart Grid as an Enabler to High PHEV Adoption

- ▶ Value proposition of PHEVs works only when off-peak power can be used
 - Customers:
 - Off-peak, retail: 7 ¢ /kWh electricity -> \$0.77/gal_e
 - On-peak, retail: 33 ¢ /kWh electricity > \$3.63/gal_e (sce TOU-EV1)
 - Utility:
 - PHEV attractive as valley filler to achieve higher asset utilization
 - Enormous generation and T&D investments if peak power is used
- "Smart" charger will become a necessity for
 - Load management
 - Price-based: critical peak/time-of-use pricing/real-time pricing
 - Direct load control
 - Autonomous control to reduce stress during emergency condition
 - V2Home
 - V2Grid

Key Issues to Address in Regional PHEV Demonstration

- Analyze interactions with the grid
 - Validate charging profiles
 - Where, when, how much PHEVs are charged
 - T&D planner need to know PHEV load profiles to maintain reliability
 - Key outcome of DOE's Technical Review of PHEV Grid Impacts (May 14, 2007)
 - Fair and attractive rate design to incentivize load management
 - Technology demonstration for load management and V2Grid
- PHEV demonstration will reveal technical & organizational challenges
 - Who owns the "smart charging" space?
 - What are the infrastructure challenges w.r. to a moving load?
- Technology standards will provide certainties necessary for infrastructure investments
 - Remember the Infrastructure Standardization/Single Charger System for EVs (CARB, 2001)

 Pacific Northwest National Laborator