

Maglev for Urban Transit

Headquarters LandMarkTower, 3~8 FL, 837-36, Yeoksam-Dong, Kangnam-Gu, Seoul, 135-080, Korea www.rotem.co.kr

R&D Center

462-18 Sam-dong, Uiwang, Gyeonggi-do, 437-718, Korea Tel : 82-31-460-1114 Fax : 82-31-460-1781

Published in July 2004

Chronology

1986	Commencement of research
1988	Development of analysis tool for levitation and propulsion equipment
1990	Development of prototype HML- 01, HML- 02
1992	Service operation for EXPO'93 with HML-03
1994	- max. design speed : 100 km/m - track length : 600 m
1996	Opening of the Maglev test track with UTM-01
1998	- max. design speed : 110 km/m - track length : 1.3 km - min. curve radius : 60 m - max. gradient : 6 %
2000	- running distance : 60,000 km (until December, 2003)
2002	l Commercial Model, Maglev - max. design speed : 110 km/h
<u>2004</u>	- max. operating speed : 80 km/h
2006	- passenger capacity : 100 person - operating systems : ATP/ATO
<u>2008</u>	Start of commercial operations

000	- max. gradient : 6 % - running distance : 60,000 km (until December, 2003)
002	Commercial Model, Magley
004	 max. design speed max. operating speed 80 km/h passenger capacity 100 person operating systems ATP/ATO
006	1 3 3
008	Start of commercial operations

Rotem Maglev

Principles

With the arrival of the Maglev, the Rotem Company demonstrates a new birth in technology for a revolution in transportation.

- Electromagnets are set on the bogie of the body, causing the vehicle to lift and stay properly aligned through attractive forces.
- Electromagnets do not touch or stick to the track since the electromagnets are controlled by a sensor that regulates the space between the track and vehicle.

- Maglev is propelled by a linear motor, which is made by splitting a rotary motor.
- The primary coil of the linear motor is mounted on the bogie, while the secondary reaction plate is installed on the rail.
- A voltage-fed inverter is used for the linear motor power control.

General Characteristics

Environmentally-friendly System

Due to no rail-wheel contact, the Rotem Maglev is a very advanced transportation system with a comfortable ride and minimum-pollution.

- lower noise [less than 65dB(A)]
- lower vibration [less than 0.02g]
- no source of dust such as rubber, iron, etc.

Excellent Driving Capabilities

The Rotem Maglev is propelled by a linear-motor generating traction force directly to the rail. • does not rely on adhesion ; no slip / no sliding

• can be operated on steep gradients easily (powerful climbing capability-max. 8%)

Safety

The Rotem Maglev is safe from derailment and overturning due to the wrapping of the bogie frame around the track.

Less Construction and Maintenance Costs

- evenly distributed load to the track makes for a light and flexible structure
- no need for noise protection barriers along the railways
- less spare parts and low maintenance / labor costs due to fewer parts which experience friction and wear

Vehicle

Train Formation

Vehicle Body Structure

The vehicle body structure is made of lightweight aluminum alloy extrusion to increase energy and levitation efficiency. The floor has soundproof and heatproof capacities.

Interior

The interior has been designed to give urban commuters convenience and safety. Whole interior fittings such as panel, floor and seats are made of incombustible material that comply with international fire and safety standards.

Bogie

The bogie frames are made of aluminum extrusion and casting. It consists of main frames and ribs. The Linear Induction Motors and Levitation Magnets are mounted on the mainframe and ribs.

Specifications

Vehicle Specifications				
Train Formation	2 vehicles (Mc1-Mc2)			
Vehicle Dimensions	L 13.5 m x W 2.85 m x H 3.50 m			
Vehicle Weight	Laden 30 tonnes			
Passenger Capacity	100 persons/vehicle			
Power Supply	1,500 VDC			
Train Performance				
Max. design speed	110 km/h			
Max. operating speed	80 km/h			
Max. acceleration	3.6 km/h/s			
Max. deceleration	3.6 km/h/s in service, 4.5 km/h/s in emergencies			
Interior noise level	max. 65 dB(A)			
Max. gradient	8 %			
Min. curve radius	60 mR			

