## **BEYOND INFRASTRUCTURE:**



## Washington State DOT's Public/Private Partnership for the I-5 Electric Highway Project

Jeff Doyle Director of Public/Private Partnerships

Paula Hammond

Secretary

**David Dye** Deputy Secretary/COO

Presented to SSTI Community of Practice, September 22-24, 2010 Minneapolis, Minnesota





Introduction: The Transportation-Energy Imperative

- **1** Electric Vehicle Basics
- 2 Why DOTs Should Help Transition Vehicles to the Electric Power Grid
- **3** WSDOT's West Coast Green Highway Initiative
- 4 Supportive State Actions



## U.S. oil dependence weakens our national security, threatens our economy, and degrades the environment.

**National Security Costs of Oil Dependence:** 

 As the largest consumers of oil in the world, the U.S. bears the burden of securing global supply lines and infrastructure, using military force if required. *Annual cost*: \$67.5 billion to \$83 billion per year.



• American diplomacy is distorted by our need to minimize disruptions to the flow of oil, constraining our foreign policy options on uranium enrichment, hostile regimes and humanitarian issues.



**Economic Costs of Oil Dependence:** 

- Every recession over the past 35 years has been preceded by or occurred concurrent with – an oil price spike.
- Economic dislocation: when oil prices fluctuate, long-term budgeting and investment is difficult for households and businesses, and economic activity is significantly curtailed.





**Economic Costs of Oil Dependence:** 

- Every recession over the past 35 years has been preceded by or occurred concurrent with – an oil price spike.
- Economic dislocation: when oil prices fluctuate, long-term budgeting and investment is difficult for households and businesses, and economic activity is significantly curtailed.





**Environmental Costs of Oil Dependence:** 

- The transportation sector is the single largest end-use emitter of carbon dioxide in the U.S (34 percent of total CO2 emissions).
- To reach a 450 ppm Co2 stabilization target, by 2030 more than 60 percent of new vehicle sales must be electric drive.





**Environmental Costs of Oil Dependence:** 

- Total domestic emissions from petroleum were 2,580 million metric tons (43 percent of total emissions). 70 percent of this is from transportation.
- Passenger and light-duty vehicles constitute 62 percent of the transportation sector's GHG emissions.



U.S. Co2 emissions, by sector (2007)



## ELECTRIC VEHICLE BASICS

### **Electric Vehicle Characteristics:**

- Instant and smooth acceleration
- Quiet (inside and out)
- Minimal maintenance
- Efficient energy usage
- Zero tail-pipe emissions











Wishington State Department of Transportation

**Electric Vehicle Models** 



## ELECTRIC VEHICLE BASICS



### **Electric Vehicles: Battery Electric (BEV) vs. Plug-in Hybrid (PHEV)**



#### Example: Nissan LEAF

- All Electric Range: 60 200 Miles, depending on battery size
- Level 1 (120 v), Level 2 (240 v) and optional Fast-Charging (480v)
- Target markets:
  - Urban Commuters
  - Second Car in Every Home
  - Eventually: all-purpose



#### Example: Chevy Volt

- Battery Electric plus ICE range extender
- 10-40 mi all-electric, 200-300 mi gas
- Level 1 (120v) and Level 2 (240v)
   Charging
- Target Market: all automotive applications



### Nissan LEAF Range and Vehicle Efficiency

| Speed and<br>Driving Conditions      | Outside<br>Temp (F) | Accessories | Estimated<br>Range (mi) | Vehicle<br>Efficiency<br>(mi/kWh)* |
|--------------------------------------|---------------------|-------------|-------------------------|------------------------------------|
| Cruising 38 mph                      | 68 <sup>°</sup>     | None        | 138                     | 5.75                               |
| Fairly steady 24 mph<br>City traffic | 77 <sup>°</sup>     | None        | 105                     | 4.38                               |
| Steady 55 mph<br>Highway             | 95°                 | A/C on      | 70                      | 2.91                               |
| Crawling 15 mph<br>Stop-and-go       | 14 <sup>°</sup>     | Heater on   | 62                      | 2.60                               |
| Average 6 mph<br>Heavy stop-and-go   | 86 <sup>°</sup>     | A/C on      | 47                      | 1.96                               |

Nissan LEAF has a 24 kWh battery

Source: "Nissan Agrees - EV Mileage Will Vary; Leaf Tests Show 91-Mile Variation." Green Car Advisor – edmunds.com. June 15, 2010.

## ELECTRIC VEHICLE BASICS



Washington State Department of Transportation

### **Fuel Source: Electric Power Grid**

### Grid-Enabled Vehicle System Architecture (source: Electrification Coalition)



## ELECTRIC VEHICLE BASICS



### **Fuel Source: Electric Power Grid**

Advantages:

- Diverse and domestic
- Prices are stable
- Substantial spare capacity



## Network infrastructure already in place Electric miles choose there are

- Electric miles cheaper than gas
- Electric miles are cleaner than gas
- 65 percent of present U.S. lightduty vehicles could be powered by existing off-peak generating capacity



### **Fuel Source: Electric Power Grid**

### Managed Charging Reduces Costs and Risks to Utilities

| Projected grid Impacts of 2 million electric vehicles |                          |                                                                                  |                            |            |  |  |  |
|-------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------|----------------------------|------------|--|--|--|
| Israel Electric<br>Co. (2008)                         | Additional<br>Generation | Additional<br>Transmission                                                       | Additional<br>Distribution | Total Cost |  |  |  |
| Unmanaged<br>Charging                                 | 2,345 MW                 | 1 switching station<br>10 substations<br>18 transformers                         | 2,158 km cables            | \$4,586M   |  |  |  |
| Off-Peak<br>Incentives                                | 1,770 MW                 | <ol> <li>switching station</li> <li>substations</li> <li>transformers</li> </ol> | 1,581 km cables            | \$3,414M   |  |  |  |
| Managed<br>Charging                                   | None                     | None                                                                             | 287 km cables              | \$471M     |  |  |  |

Source: Israel Electric Company study,. Table courtesy of Better Place.

## ELECTRIC VEHICLE BASICS



### **Charging Infrastructure**

- Level 2 charging (SAE 1772) will be the majority of charging both at home and in public and will be used by all OEMs for both electric and plug-in vehicles.
- DC Fast-charge (Level 3) is more expensive, but delivers higher performance.

| Level                 | Input<br>Voltage    | Typical<br>Charging<br>Time | Breaker<br>Size (A) | Electrical<br>Loads<br>(kW) | Typical Locations                                                               |
|-----------------------|---------------------|-----------------------------|---------------------|-----------------------------|---------------------------------------------------------------------------------|
| I                     | 120 V               | 8 – 12<br>hours             | 15-20               | 2                           | Standard 120 volt<br>plug;<br>NEV/Motorcycle<br>charging,<br>Emergency charging |
| -                     | 240 V               | 2 – 4 hours                 | 40 amp<br>Typical   | 3-6                         | Residential garages,<br>parking lots, public<br>garages, transit<br>centers     |
| DC<br>Quick<br>Charge | 480 V<br>3<br>phase | 20 – 40<br>minutes          | various             | 30-60                       | Rapid charging<br>facility near high<br>traffic volume<br>arterials             |

## ELECTRIC VEHICLE BASICS



Washington State Department of Transportation

### **Charging Infrastructure**

## Level 1 and Level 2 Charging Equipment and Stations





## GHG emissions from Washington State's transportation sector (47%) are nearly double the national figures.



Source: Washington State Department of Ecology, 2005

Source: Washington State Department of Ecology, 2005



# Within the next 30 years, the central Puget Sound region is expected to grow by 1.5 million people – increasing travel demand by 40%.

Puget Sound region population and employment forecasts, 2040.





# In spite of these ominous forecasts, Washington's transportation system must meet stringent state laws for GHG and VMT reduction.

**GHG Reduction Targets:** 

- To 1990 levels by 2020
- To 25 percent below 1990 levels by 2035
- To 50 percent below 1990 levels by 2050

VMT Reduction Targets:\*

- By 2020, decrease by 18%
- By 2035, decrease by 30%
- By 2050, decrease by 50%

\*Statewide annual per capita VMT reductions, all fuel types.



West Coast Green Highway Initiative: public/private partnerships to promote sustainable transportation solutions in the I-5 corridor, "BC-to-Baja"



WEST COAST GREEN HIGHWAY

- Alternative Fuels Pilot Project
- I-5 Electric Highway
- NewMobility HUBs
- Solar and Wind Highway Facilities

## WSDOT's WEST COAST GREEN HIGHWAY



This 'green freeway' you're planning...would link your states with a network of rest stops that allow you to do more than just grab a cup of coffee, but also charge your car.

President
 Barack Obama
 3/19/2009

### WSDOT's I-5 Electric Highway



**President Barack Obama** Goal: 1 million electric vehicles by 2015



### Leveraging \$20 million federal investment in the Puget Sound region

Project





- \$230 million total
  - \$115 million US DOE contract
- 8,300 Electric Vehicles
- 15,000 charging stations
- 16 metro areas in six states

## WSDOT's WEST COAST GREEN HIGHWAY



### WSDOT's I-5 Electric Highway Project



- Develop safety net of EV Fast-Charging stations throughout I-5 Corridor
- Seek partnerships with retail businesses located in critical recharge zones
- Coordinate EV infrastructure investments with other planned investments in Puget Sound Region
- Collaborate with Oregon and California on joint EV infrastructure development and funding

I-5 Electric Highway Partnership Approach

WSDOT's WEST COAST GREEN HIGHWAY

- Identifying Recharge Zones ٠
- Finding Business Partners to Serve as Host ٠ Sites
- Selecting Contractor through Competitive Process







## WSDOT's WEST COAST GREEN HIGHWAY



### **Screening and Site Selection Process**



## WSDOT'S WEST COAST GREEN HIGHWAY INITIATIVE

### Stage 1 Deployment: Critical Recharge Zones



- 2 Gateway Rest Areas (Level 2 charging for public education)
- 3 DC Fast Charge Sites (site selection and preparation)
- Detailed Analysis (lessons learned applied to Stage II full deployment)





### **Stage 2 Deployment: Corridor Completion**



- Complete DC Fast-Charge network along I-5
- Additional recharge zones based on analysis of Stage 1
- Potential expansion eastwest (I-90, SR 2)

## WSDOT's WEST COAST GREEN HIGHWAY



### Washington's Safety Rest Area "Gateway" Sites:



Visitor Information Booth – Gee Creek NB

#### **Gee Creek Rest Area**

- First point of entry from Oregon
- Located on I-5 Northbound (Vancouver area)
- 782,286 annual visitors



Custer Southbound Safety Rest Area

### **Custer Rest Area**

- First point of entry from Canada
- Located on I-5 Southbound (Blaine area)
- 414,615 annual visitors



Showcasing emerging technologies and Washington-based companies and products



Real-time travel information



## Renewable energy technologies





Consumer education: clean, smart transportation





### I-5 Electric Highway Project Development Schedule



## SUPPORTIVE STATE ACTIONS



### **State and Local Government Assets:**

- Under-utilized rights-of-way
- Park-and-Ride lots, transit centers
- Public office buildings with power supply
- Public parking stalls
- Public vehicle fleets
- Local signage (way-finder and location-based)
- Coordinated funding opportunities (grants, foundations, P3's)
- Leadership



### Washington State DOT's I-5 Electric Highway Public/Private Partnership

For more information, contact:

### Jeff Doyle

Director of Public/Private Partnerships Washington State Department of Transportation (360) 705-7023 main <u>DoyleJ@wsdot.wa.gov</u>

www.westcoastgreenhighway.com