High-Speed Rail International, USA and California

NORTHWEST CORRIDOR RAIL SUMMIT

Ву

Hon. Rod Diridon Sr.

Chair Intercity and High Speed Rail Committee American Public Transit Association

Member/Chair Emeritus California High Speed Rail Authority Board

* *

WHAT, US WORRY?

U.S. representatives to the United Nations climate-change conference in Copenhagen may want to go incognito. It now appears unlikely that the Senate will pass a strong climate-protection bill in time for the pivotal December summit. Moreover, the slacker mentality that grips Congress extends to the general populace: A survey of 19 countries by the University of Maryland's Program on International Policy Attitudes finds that Americans rank dead last when it comes to backing action on climate change. Most other nations show strong popular support for tough government action. Despite Britain's already substantial efforts, 77 percent of Britons think their government should do even more. At the opposite end of the spectrum, only the residents of the Palestinian territories and Iraq are as lackadaisical as us. —Pau/Rowber

HOW HIGH A PRIORITY SHOULD ADDRESSING CLIMATE CHANGE BE FOR YOUR GOVERNMENT?

High Speed Rail System in Asian Countries

Korea:	KTX
-Japan :	Shinkansen
-Taiwan:	HSR 700T
-China:	CRH Systems

High Speed Rail in Japan Shinkansen System

Opened in 1964
Total Service Mileage: 1,350 miles
Operated by 4 Japan Railway Companies
Total Fleet approx. 4,000 cars
Max. 12 Trains during peak hour
300 km/h operation

High Speed Rail in Japan Route Map

SHINKANSEN NETWORK

High Speed Rail in Japan

Shinkansen System: The most frequent service in the world. Helped local cities to grow. Initial construction cost paid off in 7 years of revenue service. Show competitiveness to airlines up to around 600 miles distance.

High Speed Rail in Japan New Train set N700 Series

High Speed Rail in Korea KTX

Korean High Speed Rail:

Between Seoul and Busan
 TGV based design.
 Total 46 train sets:

 12 trains by Alstom
 34 trains by Hyundai-Rotem
 Max Speed: 300 km/h

High Speed Rail in Korea Original KTX

First KTX by Alstom Design

High Speed Rail in Korea

New Vehicle Development by Korean Car Builder, Hyundai-Rotem

KTX-350
 Max. Speed: 350 km/h

Prototype car under running test.

High Speed Rail in Korea New KTX-350

High Speed Rail in Taiwan

Opened: January 5, 2007
Total length: 345 km
Max Speed: 300 km/h
12 car trains, total 30 train sets

High Speed Rail in Taiwan Route Map

High Speed Rail in Taiwan HSR 700T Series

High Speed Rail in China

 Mid to Long Range Rail Transportation Improvement Plan is on-going.

200 – 250 km/h Lines: Mostly dedicated for passenger services.

350 km/h Lines: Dedicated for passenger services

High Speed Rail in China Route Map

High Speed Rail System in China CRH-1 by Bombardier

High Speed Rail System in China CRH-2 by Kawasaki

High Speed Rail in China CRH-3 by Siemens

High Speed Rail in China CRH-5 by Alstom

High Speed Rail Systems in Asian Countries

- Long term commitment by government for infrastructure development
- Environmentally friendly system
 Higher passenger carrying capacity than any other transportation modes
 Economical growth of local cities along line

European HSR					
Major players:		Other countries with HSR:			
- Spain - France - Germany		 Holland Belgium England 			
- Italy Units:	200 kph - 250 kph - 300 kph - 350 kph -	125 mph 155 mph 186 mph 217 mph			

RENFE Spain 1st HSR 1992

Lines built :	Distance	Trip time	old alignment
 Madrid - Seville: 	472 km	2hr 15min	6 hr
 Madrid - Barcelona 	:	635 km	2hr 38min
	7 hr		
 Madrid – Valladolid 	:180 km	1hr	
Cordoba - Malaga:	170 km	1hr	

Under construction

Barcelona Perpignan (French border) 340 km

AVE S 100

AVE

AVE S 102

Spain: Rolling Stock >= 300 kph only

Туре	Design	Vmax	Trains	In Service
AVE S 100	Alstom (TGV)	300 kph	18	1992
AVE S 102	Talgo/ Bombardier	330 kph	46	2001
AVE S 103	Siemens (ICE-3)	350 kph	26	2007

- Total of **90 trains** capable of running at 300 kph and more.
- 1500 km high speed tracks in service (2007).
- Planned 2230 km in service by 2010.
- HSR separated from existing tracks due to gauge difference. (1435mm instead of 1668mm)

Г

SNCF France 1st HSR 1981

old

50min

15min

45min

30min

Approximately 3 hrs travel time

Lines built : alignment	Distance	Trip time
 Paris - Lyon: 	427 km	2hr 3hr
Paris - Tours:	282 km	1hr 10min 2hr
 Paris - Calais: 	329 km	1hr 30min 3hr
 Lyon - Marseille: 	251 km	1hr 40min 3hr
 Paris - Metz: 	300 km	1hr 25min 2hr
 Paris - London: 	(480 km)	2hr 15min 6hr
 London – Bruxelles 	(~350 km)	2hr 5hr
Under construction		
 Dijon – Mulhouse 	425km	(2012)
 Metz – Strasbourg 	96 km	(2014)
Tours – Bordeaux	303 km	(2015)

France: Rolling Stock for >= 300 kph

TGV - PSE

TGV- Atlantique/Réseau

Thalys fist generation = TGV Réseau

Designed for international service to Belgium and the Netherlands (Brussels Amsterdam)

France: Rolling Stock for >= 300 kph

TGV-2N

TGV – EST

Designed to travel also in Germany and Switzerland on regular tracks

France: Speed records

- Long distance: 1067 km in 3hr 29min → average speed 305 kph! (TGV Réseau: Calais to Marseille May 26; 2001)
- **Top speed:** 574.8 kph (April 3rd; 2007)

Train-Consist:

•Two TGV-EST locomotives and two powered Jacobs bogies (AGV).

- •12 powered axles of 16 total
- •Total power 20 MW!
Next Generation TGV = AGV

Major differences:

- Distributed power (EMU rather than locomotive design)
- Powered Jacobs-Bogie
- Reduced axle load

- Permanent magnet motors (synchronous motors)
- Improved aero-dynamics
- More passenger space (no locomotive)

France Rolling Stock > 300 kph

Туре	Design	Vmax [kph]	Trains	In Service	
TGV-PSE	Alstom	270 to 300	> 100	1982	
TGV-Atlantique	Alstom	300 to 320	> 100	1989	
TGV-Réseau	Alstom	320	80	1995	
TGV-Douplex	Alstom	320 to 350	~ 150	1996	
TGV-EST	Alstom	320 later 350	~ 10	2007	
Thalys PBA	Alstom	320	10	1995	
Thalys PBKA	Alstom	320	17	1997	
Eurostar	Alstom	300	38	1993	
AGV	Alstom	360	1 Test train	2008	

SNCF France

- More than 500 trains capable of running at 300 kph and more
- Some of the trains are owned by neighboring countries
- International service
- More than 1500 km high speed tracks
- Another ~ 900 km under construction
- HSR sections separated from existing tracks
- All trains capable of running on existing tracks

DB Germany 1st HSR 1991

Most HSR lines are operated at 250 kph Only lines with max speed 300 kph are listed here

Lines built :

- Frankfurt Köln: 177 km
- Ingolstadt Nürnberg: 89 km

Under construction

- Ebensfeld Erfurt: 122 km
- München-Leibzig-Berlin planned opening 2017

Frankfurt - Köln

High speed trains only
Grades up to 4^c
Follows the topography
Ballast less trac
300 kph; IC3

i Köln-Frankfurt (Main) --- 05/2004 © by André Werske (www.werske.de)

Germany: Rolling Stock

Туре	Design	Vmax	Trains	In Service
ICE-1	Siemens	280 kph	60	1982
ICE-2	Siemens	280 kph	44	1989
ICE-3	Siemens	330 kph	72	2000

ICE-2

ICE-3

Peculiarities of German HSR

- High population density between major cities
- German legal system allows private persons to challenge the proposed alignment
- More effort is put into upgrading existing alignments than new lines
- Upgraded alignments typically allow less than 250 kph due to geographical constraints
- Freight and slower passenger trains run on the same alignment

FS Italy 1st HSR 2005 (300kph)

Italy has an extensive alignment of 200+ kph. It had trains running at 200 to 250 kph starting in the 1970ies.

Lines built :

- Roma Napoli:
- Turin Novara:
- Milano Treviglio:
- Padua Mestre:

DIStance	inp ume	note
200 km	1hr 30min	25 kV
84 km		25 kV
24 km		3 kVdc
24 km		3 kVdc

Dictoreo Trip timo noto

- Under construction
 - Milano Bologna Firenze

Italy: Rolling Stock

Туре	Design	Vmax	Trains	In Service
ETR 500 (P)	Ansaldo/Bombardier	300 kph	60	1982

Benefits of HSR in Europe

Appeals to travelers

- Cost efficient
- Competitive with air travel for trip times < 4 hours
- City center to City center travel
- More reliable
- More flexible
- More room for traveler
- Conveniences (Bar, Restaurant)

Environmental benefit

- At 300kph 3 times more energy efficient than flying
- Independent of the type of primary energy source
- Less carbon pollution (TGV is practically carbon free)
- Economic development near stations
- Reduces congestions on roads an airports

Development Trends in Europe

- Network projects replace single-lines projects
- International system compatibility (clearance, weight, voltage, train protection, ticketing)
- Operation on existing tracks to connect city centers
- Speeds up to 350 kph on new lines
- Connect major cities in less than 4 hrs
- Compete with airlines (50% of the market, if trip time is less than 4 hours)
- Replace night trains

New TGV lines outside Asia and Europe

America

 Argentina: Buenos-Aires à Cordoba (710km; Trip time 14hrs now - planned < 3 hrs)

Africa

Morocco: Casablanca-Tanger (2013)
Mexico

Congressionally Designated Steel Wheel on Rail Systems

System	Total Cost	
New York (Empire)	\$1.5	
Pennsylvania (Keystone)	\$1.3	
New England Rail	\$2.8	
Southeast High Speed Rail	\$4.9	
South Central Corridor	\$2.9	
Florida High Speed Rail	\$14.4	
Midwest Regional Rail	\$8.6	
Ohio-Cleveland Hub	\$3.9	
California High Speed Rail	\$33.0	
Pacific Northwest	\$2.4	
Gulf Coast	\$5.2	
Total Costs	\$80.9	
	(All costs in 2007\$	

Billions)

Intermediate and High Speed Rail Corridor Designations

Created by Mineta Transportation Institute

Midwest Regional Rail: 100 Rail Stations

California High-Speed Rail Authority

- Authorized by legislation in 1996
- Nine-member authority board five appointed by Governor, two by State Senate, two by State Assembly
- Budget expended in state/federal funds to date, \$70M
- Program level Environmental Clearance certified on July 9, 2008

CHSRA Fiscal Summary

- Operations and business plans were developed by Charles River Associates in 2001 and confirmed and expanded upon by Cambridge Systematics in 2008
- Expected performance of the starter line from Anaheim via Los Angeles, the Central Valley, Gilroy, San Jose, to San Francisco:
 - Completion 2018-2020
 - Ridership 55 million per year
 - Gross revenue \$2.4B
 - Net after O and M \$1.1B
- Design, construction and rolling stock
 - Federal \$12 to \$16B
 - State \$9 B
 - Public/private partnership \$6.5 to \$7.5B
 - Local cost sharing \$2 to \$3 B

CHSRA Fiscal Summary, Cont.

- Expected performance of the 790-mile basic system connecting San Diego, Inland Empire, Los Angeles, Central Valley, Bay Area and Sacramento:
 Completion – 2020 to 2030
 - Ridership 93 M annually
 - Gross revenue \$3.6B
 - Net after O and M \$2.0B

STEEL WHEEL/STEEL RAIL HIGH SPEED GROUND TRANSPORTATON SYSTEMS

California's Existing & Projected Population

Sources: 1990 and 2000 - U.S. Census Bureau; Projections - CA Dept. of Finance, 1998

HIGH-SPEED TRAIN TRAVEL TIMES

 High-speed trains will provide Californians with safe, predictable, consistent and competitive region-to-region transportation.

Travel Time (Hrs:Min)									
	Los Angeles	San Francisco	San Jose	San Diego	Sacramento	Fresno	Bakersfield	Riverside	Anaheim
Los Angeles	N/A	2:38	2:09	1:18	2:11	1:24	0:54	0:33	0:20
San Francisco	2:38	N/A	0:30	3:56	1:06	1:20	1:51	3:10	2:57
San Jose	2:09	0:30	N/A	3:27	0:52	0:51	1:21	2:41	2:28
San Diego	1:18	3:56	3:27	N/A	3:29	2:42	2:12	0:48	N/A
Sacramento	2:11	1:06	0:52	3:29	N/A	0:53	1:23	2:43	2:37
Fresno	1:24	1:20	0:51	2:42	0:53	N/A	0:37	1:56	1:43
Bakersfield	0:54	1:51	1:21	2:12	1:23	0:37	N/A	1:26	1:13
Riverside	0:33	3:10	2:41	0:48	2:43	1:56	1:26	N/A	N/A
Anaheim	0:20	2:57	2:28	N/A	2:37	1:43	1:13	N/A	N/A

Optimal Express Trip Times between City Pairs (220 mph [350 kph] maximum speed)

Sources of HSR Ridership (Interregional Trips)

Sources of HSR Ridership

BENEFITS OF HIGH-SPEED TRAINS

• A new mode of transportation that would increase connectivity and accessibility to existing transportation systems, air transportation, and underserved inland populations such as the Central Valley.

- Safer, more reliable than highway or air travel.
- Quick, predictable travel times that would be sustainable over time.
- Lower passenger costs than air or auto travel.
- Would provide additional capacity for future generations.
- Decreased energy consumption, reduced air pollution, and reduced reliance on petroleum.
- Would cost 2 to 3 times less and have fewer environmental impacts than expanding highways and airports to meet future demands.
- Environmental impacts are minimized with most alignments within or adjacent to existing rail or highway right-of-way.

California's 2050 population estimated at 60M+ Alternatives to meet that need:

Key variables	Highway/Airport Alternatives: 3,000 added lanes/miles of freeway and 2 new international airports	California High Speed Rail Alternative: 790 miles of California High Speed Rail		
Cost	\$100 Billion	\$40 Billion		
Capacity beyond 2050	None	Adequate until 2100		
Energy	22 million barrels of petroleum per year more than HSR	Electric power: 1/5 the energy of a car, 1/3 energy of a plane per seat/mile		
Pollution	Creates 18 billion more pounds per year of CO ₂ than HSR	Base Case		
Safety	43,000 people killed and hundreds of thousands injured on US highways in 2007 Created by Mineta Transportation I	No fatalities in 45 years of Japanese Shenkansen and more than 25 years of French		

ECONOMIC BENEFITS

Like past major infrastructure projects – California's water, university and highway systems – the high-speed train system would be an economic stimulant and smart investment in California's infrastructure.

- Creating 160,000 construction-related jobs.
- A high-speed train system is forecast to improve California's economy, resulting in an additional 450,000 new permanent jobs by 2035.
- Cost benefit analysis based upon "investment grade" ridership forecasts concluded that the high-speed train system benefits would be more than two times its cost.

California High-Speed Train Project

26 Stations

150 Miles of Bridges, Viaducts, and Elevated Structures

35 Miles of Tunnels

610 Grade Separations

510,000 Square Yards of Retaining Walls

110 Power Supply, Switching and Paralleling Sub-Stations

SStatis Hos CS

California High-Speed Train Project

215 Million Cubic Yards of Earthwork

9.2 Million Cubic Yards of Concrete

4.5 Million Tons of Steel

1,600 Miles of Track

2,400 Miles of Electrical and Communication Cables

126,000 Construction Jobs

14,000 Operations and Maintenance Jobs

32,000 Engineering and Management Jobs

Statistics CS

Anaheim, CA

Fresno, CA

90 Consultant Groups on CAHSR Project

- Program Management: Parsons Brinckerhoff, with SYSTRA, Cordoba, KDG Group, Cambridge Systematics & 12 specialty groups
- Financial Planning: IMG, Barclays, Sperry Capital
- Regional Engineering & Environmental Work:
 - Hatch Mott MacDonald/USR/Arup JV, with Consensus Planning Group & 9 other specialty groups
 - STV Inc., with UltraSystems Environmental, & 4 specialty groups
 - HNTB/CH2M HILL, with Arellano Associates, Katz & Associates
 - URS/HMM/Arup JV, Forhan Co., VRPA Technologies, & 5 other specialty groups
 - AECOM/CH2MHILL, with Circle Point, and 2 specialty groups
 - AECOM, with EarthTech, EDAW, Jones & Stokes, HNTB & 2 other specialty groups
 - HNTB, with AECOM, PBS&J, & 5 other specialty groups
 - Parsons, with Jones & Stokes, HDR Engineering, Circle Point, & 11 other specialty groups
- Visual Simulation: NC3D, and 3 specialty groups
- Program Management Oversight: Jacobs Engineering

Program Management

Program Management

Phase 1 Regional Teams' Progress / Plan

Following Phase Regional Teams' Progress / Plan

Program Management Teams' Progress / Plan

Contact Information California High-Speed Rail Authority 925 L Street, Suite 1425 Sacramento, CA 95814

Telephone (916) 324-1541 Fax (916) 322-0827

www.cahighspeedrail.ca.gov

Created by Mineta Transportation Institute